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Exercise 1: O-Notation (3+4+5 Points)

For a function f(n), the set O
(
f(n)

)
contains all functions g(n) that are asymptotically not growing

faster than f(n). The set Ω
(
f(n)

)
contains all functions g(n) with f(n) ∈ O

(
g(n)

)
. Finally, Θ

(
f(n)

)
contains all functions g(n) for which f(n)∈O

(
g(n)

)
and g(n)∈O

(
f(n)

)
. This is formalized as follows:

O
(
f(n)

)
:= {g(n) | ∃c > 0, n0 ∈ N, ∀n ≥ n0 : g(n) ≤ cf(n)}

Ω
(
f(n)

)
:= {g(n) | ∃c > 0, n0 ∈ N ∀n ≥ n0 : g(n) ≥ cf(n)}

Θ
(
f(n)

)
:= {g(n) | ∃c1, c2 > 0, n0 ∈ N ∀n ≥ n0 : c1f(n) ≤ g(n) ≤ c2f(n)}

State whether the following claims are correct or not. Prove or disprove with the definitions above.

(a) n! ∈ Ω
(
n2

)
(b)
√
n3 ∈ O(n log n) Hint: For all ε>0 there is an n0 ∈ N such that for all n ≥ n0 : log2 n ≤ nε.

(c) 2
√

log2 n ∈ Θ(n)

Sample Solution

(a) The claim is true. We choose n0 = 4 and c = 1. Then we have n2 ≤ n · (n−1) ·2 ≤ n! for all n ≥ 4.

(b) The claim is false. Assume there exist c > 0, n0 ∈ N such that for all n ≥ n0 :
√
n3 ≤ cn log n.

√
n3 ≤ cn log n, ∀n ≥ n0

⇐⇒ n1/2 ≤ c log n, ∀n ≥ n0

⇐⇒ n1/4 · n1/4 ≤ c log n, ∀n ≥ n0

=⇒
(
n1/4 ≤ c OR n1/4 ≤ log n

)
, ∀n ≥ n0

But n1/4≤c is contradictory for all n≥c4. Additionally n1/4≤ log n ∀n ≥ n0 is a contradiction to
the hint. Thus the assumption must have been false, and therefore

√
n3 /∈ O(n log n).

(c) The claim is false since 2
√

log2 n /∈ Ω(n) (⊇ Θ(n)). For a contradiction assume there exist c >
0, n0 ∈ N such that

2
√

log2 n ≥ cn, ∀n ≥ n0

⇐⇒ 2
√

log2 n
√

log2 n ≥ (cn)
√

log2 n, ∀n ≥ n0

⇐⇒ n ≥ (cn)
√

log2 n, ∀n ≥ n0

n≥16
=⇒ n ≥ (cn)2, ∀n ≥ max(n0, 16)

⇐⇒ 1
c2
≥ n, ∀n ≥ max(n0, 16)

But this is contradictory for all n ≥ 1/c2.



Exercise 2: Sort Functions by Asymptotic Growth (5 Points)

Use the definition of the O-notation to give a sequence of the functions below, which is ordered by
asymptotic growth (ascending). Between two consecutive elements g and f in your sequence, insert
either ≺ (in case g ∈ O(f) and f /∈ O(g)) or ' (in case g ∈ O(f) and f ∈ O(g)).

Note: No formal proofs required, but you loose 1
2 point for each error.

n2 √
n 2

√
n log(n2)

2
√

log2 n log(n!) log(
√
n) (log n)2

log n 10100n n! n log n

2n/n nn
√

log n n

Sample Solution
√

log n ≺ log(
√
n) ' log n ' log(n2)

≺ (log n)2 ≺ 2
√

log2 n ≺
√
n ≺ n

' 10100n ≺ n log n ' log(n!) ≺ n2

≺ 2
√
n ≺ 2n/n ≺ n! ≺ nn

Exercise 3: Master Theorem for Recurrences (5 Points)

Use the Master Theorem for recurrences, to fill the following table. That is, in each cell write Θ
(
g(n)

)
,

such that T (n) ∈ Θ
(
g(n)

)
for the given parameters a, b, f(n). Assume T (1) ∈ Θ(1). Additionally, in

each cell note the case you used (1st, 2nd or 3rd by the order given in the lecture). We filled out one
cell as an example.

Note: You loose 1
2 point if the complexity class is wrong and another 1

2 if the case is wrong.

T (n)=aT (nb )+f(n) a = 16, b = 2 a = 1, b = 2 a = b = 3

f(n) = 1 Θ(n4), 1st

f(n) = n3

f(n) = n4 log n

Sample Solution

T (n)=aT (nb )+f(n) a = 16, b = 2 a = 1, b = 2 a = b = 3

f(n) = 1 Θ(n4), 1st Θ(log n), 3rd Θ(n), 1st

f(n) = n3 Θ(n4), 1st Θ(n3), 2nd Θ(n3), 2nd

f(n) = n4 log n Θ(n4 log2 n), 3rd Θ
(
n4 log n

)
, 2nd Θ(n4 log n), 2nd

Exercise 4: Peak Element (5+4 Points)

You are given an array A[1 . . . n] of n integers and the goal is to find a peak element, which is defined
as an element in A that is equal to or bigger than its direct neighbors in the array. Formally, A[i] is a
peak element if A[i− 1] ≤ A[i] ≥ A[i + 1]. To simplify the definition of peak elements on the rims of
A, we introduce sentinel-elements A[0] = A[n+1] = −∞.



(a) Give an algorithm with runtime O(log n) (measured in the number of read operations on the
array) which returns the position i of a peak element.

(b) Prove that your algorithm always returns a peak element, give a recurrence relation for the runtime
and use it to prove the runtime.

Sample Solution

(a) Algorithm 1 Peak-Element(A, `, r)

if ` = r then return A[`] . base case

m← d `+r
2 e

if A[m] ≤ A[m+1] then
return Peak-Element(A,m + 1, r)

else if A[m] ≤ A[m−1] then
return Peak-Element(A, `,m− 1)

else return A[m] . peak element found

A call of Peak-Element(A, 1, n) returns a peak element in A.

(b) We show the invariant that during each call of Peak-Element(A, `, r), we have A[`−1] ≤ A[`]
and A[r] ≥ A[r+1]. Since A[0], A[n + 1] = −∞, this is obviously true for Peak-Element(A, 1, n).
During sub-calls of Peak-Element(A, `, r) this condition is maintained by the If-conditions and
the recursive calls and the appropriate sub-array. This implies that we have found a peak element
when ` = r (at the latest, but we may find one earlier).

During every recursive step, the considered sub-array is at most half the size of the previous one,
thus the algorithm terminates eventually. Additionally, in each recurse step we make at most one
recursive sub-call. Furthermore, in each recursive step we read at most 5 array entries. Thus we
have T (n) ≤ T (n/2) + 5 (reads), which solves to T (n) ∈ O(log n) using the Master Theorem.

Exercise 5: Frequent Numbers (5+4 Points)

You are given an Array A[0 . . . n−1] of n integers and the goal is to determine frequent numbers which
occur at least n/3 times in A. There can be at most three such numbers, if any exist at all.

(a) Give an algorithm with runtime O(n log n) (measured in number of array entries that are read)
based on the divide and conquer principle that outputs the frequent numbers (if any exist).

(b) Argue why your algorithm is correct, give a recurrence relation for the runtime and use it to prove
the runtime.

Sample Solution

(a) Algorithm 2 Frequent-Numbers(A, `, r)

if ` = r then return {A[`]} . base case

C ← Frequent-Numbers(A, `, d `+r
2 e−1) . candidates are the frequent numbers of left . . .

C ← C∪ Frequent-Numbers(A, d `+r
2 e, r) . . . . and right sub-array

for c ∈ C do
count the number of occurrences of c in A[` . . . r]
if c occurs less than r−`

3 times in A[` . . . r] then C ← C \ {c}
return C

A call of Frequent-Numbers(A, 0, n−1) solves the problem.



(b) We split the given array A into two parts of (almost) equal size. A frequent number of that array
must be a frequent number in the left half or the right half (or both). Thus it suffices to first find
the frequent numbers of the left sub-array and then the ones of the right (if they exist). We do
this by applying the procedure recursively and then check whether some of these are also frequent
in A, by simply counting the number of occurrences of the candidates.

In each iteration we make recursive calls on two sub-arrays of half the size of A. Afterwards we
count elements in the current array which takes at most 6n read operations if n is the current size
of the array (note that the set C has size at most 6). We obtain the recurrence relation T (n) ≤
2T (dn2 e) + 6n with base case T (1) = 1 (one read operation), which solves to T (n) ∈ O(n log n)
with the Master Theorem.


