
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Ahmadi, P. Schneider

Algorithms Theory

Sample Solution Exercise Sheet 2
Due: Monday, 19th of November, 2018, 14:15 pm

Exercise 1: Majority and Frequent Elements (4+6 Points)

Let us assume that A is an arbitrary array of size n that contains n integers. An element in A is called
a majority element if the number of occurrences of the element in A is strictly greater than n/2.

(a) Provide an algorithm that returns the majority element of A if there is one. The algorithm must
have a time complexity of O(n) and constant auxiliary space.

(b) Argue the correctness of your answer.

Note: Auxiliary space is the space the algorithm needs in addition to the input (i.e., array A) throughout
the algorithm execution.

Sample Solution

(a) The algorithm considers two integer variables count and majority, where count is initially set
to 0 and majority is initially set to the first element of the array. The algorithm consists of two
phases.

In the first phase, the algorithm scans the whole array. Let a be the element currently being read.
If a is the same element as majority then increment count, else, decrement count. As soon as
count becomes 0, the current element a becomes the new majority and count is incremented.

In the second phase, the algorithm checks whether the content of variable majority at the end
of the first phase is actually a majority element or not. To do so, it scans the whole array once
again and counts the number of occurrences of the content of variable majority in A.

(b) Considering array A[1..n], let us define the majority element of a subarray A[i..j] of A as the
element whose number of occurrences in A[i..j] is more than (j − i + 1)/2. Then, consider the
following claim:

Claim 1. Let A′[1..n′] be an arbitrary array containing n′ integers, and let x be its majority
element. For an integer i < n′, if subarray A′[1..i] of A has no majority element, then x is the
majority element of A′[i+ 1..n′]

Proof. We first show that A′[i + 1..n′] has a majority element. Afterwards, we will show that it
must be x. For the sake of contradiction, let us assume that A′[i+ 1..n′] has no majority element.
Fix any element y in A′. Then, since A′[1..i] or A′[i+1..n′] have no majority elements, the number
of occurrences of y in A′[1..i] is at most i/2 and in A′[i + 1..n′] is at most (n′ − i)/2. Therefore,
the number of occurrences of y in A′ is at most i/2 + (n′ − i)/2 = n′/2. It implies that y cannot
be a majority element in A′, which contradicts our assumption. Hence, A′[i+ 1..n′] has a majority
element.

It is not difficult to see that the number of occurrences of any element except x in A′[1..i] and
A′[i+ 1..n′] in total is at most n′/2. Hence, the majority element of A′[i+ 1..n′] must be x. �



If during the execution, variable count never goes to 0, then it is trivial to see that variable
majority contains the majority element of A. Otherwise, let j be the last index when the algorithm
sets count to 0. If j = n, then A has no majority element. Otherwise, based on Claim 1, A[j+1, n]
must have a majority element, if A has a majority element. Therefore, due to the choice of j, and
the fact that the content of variable majority is the majority element of A[j + 1, n], the only
element that can be the majority element of A is the element in variable majority at the end.
Hence, the second phase of the algorithm correctly determines whether there is a majority element
or not.

Exercise 2: Covering Unit Intervals (3+6 Points)

We are given a set X of real numbers. The problem is to find the minimum cardinality set of unit
intervals S = {[s1, s1 + 1], [s2, s2 + 1], . . . , [sk, sk + 1]}, where s1, s2, . . . , sk ∈ R, such that every real
number in X belongs to at least one interval in S.

(a) Consider the following greedy algorithm A, determine whether it solves the problem or not and
explain why.

A proceeds in steps until X becomes empty. In the jth step, A determines sj ∈ R such that the
unit interval [sj , sj + 1] contains the maximum number of elements left in X. Then, to conclude
the jth step, A removes all the real numbers from X that are contained in [sj , sj + 1].

(b) Provide an efficient greedy algorithm to solve the problem. Argue the correctness of your answer.

Sample Solution

(a) The given greedy algorithm does not solve the problem. Here is a counter example showing that
the algorithm does not return an optimal solution. Consider a small constant, say ε = 1

100 . Then,
let X := {−ε, 1− 3ε, 1− 2ε, 1− ε, 1 + ε, 1 + 2ε, 1 + 3ε, 2 + ε}. The first chosen interval by the
greedy algorithm must contain {1− 3ε, 1− 2ε, 1− ε, 1 + ε, 1 + 2ε, 1 + 3ε}. Then, the algorithm
needs to pick two extra intervals to cover the two remaining uncovered elements of X. However,
an optimal solution is {[−ε, 1− ε], [1 + ε, 2 + ε]}, which has cardinality of 2.

(b) The algorithm first sorts the elements in X. Then, it proceeds in steps until X becomes empty.
In each step, it picks the minimum element δ left in X. Then, it adds the unit interval [δ, δ + 1]
to the set of chosen intervals, and concludes the step by removing all the elements from X that
are in interval [δ, δ + 1].

Here, we present an exchange argument to show that the greedy solution is an optimal solution.
Let S = α1 < α2 < . . . be the ordered sequence of the starting points of the intervals calculated
by the above greedy algorithm on the arbitrary given input X. Moreover, let S∗ = β1 < β2 < . . .
be the ordered sequence of the starting points of the intervals in an arbitrary optimal solution of
X. Let i ≤ y be the smallest integer such that αi 6= βi. Due to the greedy choices, αi ∈ X and
αi > αi−1 + 1. Therefore, since the optimal solution must cover all the elements of X, αi must be
covered by [βi, βi + 1]. Therefore, βi < αi.

Note that all the elements in X that are smaller than αi are already covered by the intervals of S∗

with starting point less than αi. Hence, one can modify S∗ by replacing βi with αi. This change
does not increase the number of intervals in S∗, and still all the numbers in X are covered with
respect to S∗. One can apply this exchange argument finite number of times to stepwise change
S∗ to S without increasing the number of intervals or violating the solution’s correctness.

Exercise 3: Scheduling (4+7 Points)

We are given n jobs J1 = (s1, p1), . . . , Jn = (sn, pn), where si is the earliest start time and pi is the
processing time of job Ji. The goal is to schedule these jobs on a single processor, whereas each job



can be suspended and resumed again as many times as needed. For example a job Jk = (4, 5) could
be scheduled to be processed in intervals [4, 6], [10, 12], and [15, 16].

(a) Provide an efficient greedy algorithm to compute a scheduling of the n jobs on a single processor
while minimizing parameter C =

∑n
i=1 ci, where ci is the time when job Ji is completed.

(b) Argue the correctness of your answer.

Sample Solution

(a) Consider the following algorithm.

Algorithm 1 Schedule(〈J1, J2, . . . , Jn〉)
Create a sequence S of all jobs sorted by starting time and a priority queue PQ
Let i be the minimum starting time of all jobs
while S 6= ∅ and PQ 6= ∅ do

Remove all jobs with starting time i from S
Insert them into PQ with a key of processing time
p← PQ.min()
Let J be a job in PQ with key p
Let t be the minimum starting time of all jobs in S
Schedule job J from time i to i′ := min{t, p}
Decrease the key of job J by i′ − i
Remove J from PQ if its key is 0
i← i′

(b) Here, we present an exchange argument to show that the above greedy algorithm provides an
optimal solution. Let G be the solution calculated by the above greedy algorithm. Moreover, let
S be an arbitrary optimal solution. We show that one can stepwise change S until it becomes
identical to G. Furthermore we show that in each step, the solution after the change is at least as
good as the solution before the change.

Let t be the largest real number such that G and S are identical until time t (always schedule the
same jobs or are idle at the same time). Let job Jg be the job that is scheduled from time t to tg
in G, and job Js be job that is scheduled from time t to ts in S (S must schedule a job Js at time
t otherwise it would not be optimal). Let t′ = min{tg, ts}. We show that one can change S to S′

such that S′ is identical to G until time t′ and still as good as S. Let cg and cs be the times job
Jg and Js are respectively completed in S. We consider two cases to calculate S′.

(1) [cs < cg] Let pg and ps respectively be the remaining processing times of jobs Jg and Js at
time t. To calculate S′ from S, consider all the time units that are assigned to jobs Jg or Js.
Then, we change S by assigning the first pg of these time units to job Jg, and the rest to Js.
Due to the greedy choice, we have pg < ps. Therefore, the time at which Jg is completed in
S′ is at most cs. Moreover, it is not difficult to see that the time at which Js is completed in
S′ is cg. Therefore, S′ is at least as good as S.

(2) [cg < cs] Let pg be the remaining processing time of job Jg at time t. Due to the fact that Jg
is scheduled in G from t to t′, pg ≥ t′ − t. To construct S′, we apply the following two steps
to transform S to S′. First, assign the last t′ − t units that are scheduled for Jg in S to Js.
Then, assign the time units in [t, t′] to Jg. Since cg < cs, the times at which Jg and Js are
completed do not change. Therefore, S′ is at least as good as S.

Exercise 4: Divide and Conquer (2+6+2 Points)

Consider a n×n square grid with n = 2k for a k ∈ N≥1. We have an unlimited supply of a specifically
shaped tile, which covers exactly 3 cells of the grid as follows:



The goal is to cover the whole grid with these tiles (which can also be turned by 90, 180 and 270
degrees). We call an arrangement of tiles on grid cells a valid tiling, if all cells of the n×n grid can be
covered with the tile above without any overlaps of tiles and without going over the edges of the grid.
Assume that the input grid has an arbitrary single cell that is initially tiled (before the start of the
algorithm). E.g. for n = 8 the input grid may look like this:

(a) Is there a valid tiling for every 2k × 2k grid (k ∈ N≥1) that is initially completely empty? Prove
or disprove.

(b) Describe a divide and conquer algorithm that computes a valid tiling on a n×n grid in O(n2)
(with n=2k, k ∈ N≥1) that has one cell that is initially tiled. Assume that placing a tile is in O(1).

(c) Show the running time of O(n2).

Sample Solution

(a) No there is not. Assume there were such a valid tiling using t copies of the above tile. Then
3t = 22k, i.e., 3 divides a power of 2, a contradiction since 2 and 3 are both prime.

(b) Our strategy is to divide a 2k× 2k grid into four 2k−1× 2k−1 sub grids and maintain the invariant
that one cell will always be tiled (using the knowledge that a valid tiling is impossible on a
completely empty grid). This invariant immediately gives us a valid tiling for the base case of a
2× 2 grid.

Divide: We have a 2k × 2k grid with k > 1 and one cell already tiled. We divide it into four
2k−1 × 2k−1 sub-grids.We make sure that each sub grid has one cell that is already tiled. We do
this by placing the tile such that it covers exactly one cell of each sub-grid that does not have a
tiled cell yet, as exemplified by the following figure.



2k−1= n
2

2k=n

Base Case: We have a 2 × 2 grid with one cell already tiled which looks like the example below
(except for the orientation of the tiled cell). This can obviously be covered using one of our
specifically shaped tiles and we obtain a valid tiling.

Conquer: By producing valid tilings for all 2 × 2 sub grids we obtain a valid tiling for the whole
grid.

(c) The run time is T (n) = 4T (n/2) + O(1) which solves to O(n2) using the Master Theorem.


