
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Ahmadi, P. Schneider

Algorithms Theory

Sample Solution Exercise Sheet 6
Due: Monday, 21st of January, 2019, 14:15 pm

Exercise 1: Contention Resolution (2+2+4 Points)

Consider the contention resolution problem explained in the lecture with n processes and a single
shared resource. We would like to calculate the expected number of time slots until every process has
been successful at least once. For all integers i ≤ n, let random variable Ti denote the smallest integer
such that exactly i different processes are successful to access the resource in the first Ti time slots.

(a) Let t be an arbitrary time slot in [Tj + 1, Tj+1] for an arbitrary integer j < n. What is the
probability that some process becomes successful for the first time in time slot t?

(b) For all i ≤ n, let random variable Xi be the number of rounds needed for the ith process to
succeed after exactly i− 1 distinct processes have succeeded, i.e., Xi := Ti − Ti−1. Then, for an
arbitrary integer j ≤ n, what is the expected value of Xj?

(c) What is the expected value of Tn, the time for all processes to succeed at least once?

Hint: The probability that some process is successful in a given time slot is (1 − 1/n)n−1. We have
seen that this probability is approximately 1/e. For simplicity, you can assume that this probability is
exactly 1/e.

Sample Solution

(a) In every time slot in [Tj + 1, Tj+1], there are n− j processes that have not yet been successful.
Therefore, considering the given hint, the probability that one of these nodes becomes successful
in any such round is 1

e ·
n−j
n .

(b) Considering part (a), Xj has geometric distribution with parameter n−j+1
en . Therefore, the ex-

pected value of Xj is en
n−j+1 .

(c) Due to the definition of Ti and Xi, considering T0 = X0 = 0, it holds that Tn =
∑n

i=1Xi.
Therefore, considering the linearity of expectation, it holds that

E[Tn] = E[X1 + X2 + · · ·+ Xn]

= E[X1] + E[X2] = . . .E[Xn]

=

n∑
i=1

en

n− i + 1

=

n∑
j=1

en

j

= en ·H(n)

≈ en · lnn

Exercise 2: Randomized Independent Set Algorithm (6+7 Points)

Let G = (V,E) be a graph with n vertices and m edges. An independent set in a graph G is a subset S ⊆
V of the nodes such that no two nodes in S are connected by an edge. Let d := 1

n

∑
v∈V deg(v) = 2m

n be
the average node degree and consider the following randomized algorithm to compute an independent
set S.

(I) Start with an empty set S. Then independently add each node of V with probability 1/d to S
(you can assume that d ≥ 1).

(II) The subgraph induced by S might still contain some edges and we therefore need to remove at
least one of the nodes of each of the remaining edges. For this, we use the following deterministic
strategy: As long as S is not an independent set, pick an arbitrary node u ∈ S which has a
neighbor in S and remove u from S.

It is clear that the above algorithm computes an independent set S of G.

(a) Find a (best possible) lower bound on the expected size of S at the end of the algorithm. Your
lower bound should be expressed as a function of n and d.

Hint: First compute the expected numbers of nodes in S and edges in G[S] after Step (I) of the
algorithm.

(b) Assume that the above algorithm has running time T (n) and that it computes an independent set
of size at least n

5d with probability at least 1
2 .

Show how to compute an independent set of size at least n
5d with probability 1− 1

n . What is the
running time of your algorithm?

Sample Solution

Let G = (V,E) be the given graph and let n = |V | denote the number of nodes, m = |E| the number
of edges and d = 2m

n the average degree.

(a) We first compute the expected number of nodes in S after the first step. Let X be the random
variable which indicates the size of S. By linearity of expectation we obtain

E[X] =
∑
v∈V

1

d
=

n

d
.

Let Y be the random variable which denotes the number of edges in G[S] after the first step. Each
edge e ∈ E exists in G[S] if and only if both of its adjacent nodes joined S in the first step, which
happens with probability 1/d2. Thus we obtain

E[Y] =
∑
e∈E

1

d2
=

m

d2
.

Now, we use that m = dn/2 and obtain E[Y] = dn/2d2 = n/2d.

In step (II) all edges are removed. Therefore, the size of the independent set after step (II) is at
least X − Y because we remove at most one node for each edge in G[S]. Combining both results
and using linearity of expectation we obtain that the expected number of nodes after step (II) is
at least

E[X − Y] = E[X]− E[Y] =
n

2d
.

(b) Let A denote the above algorithm which finds an independent set of size at least n/5d with
probability 1/2. We amplify the probability by executing algorithm A, k times (with independent

probabilities), where we determine the proper value of k later. We return the largest independent
set of all k invocations of the algorithm.

If we have k invocations, the probability that we do not return an independent set of size at least
n/5d after the k invocations is the same as the probability that none of the independent invocations
returns an independent set of size at least n/5d. This probability can be bounded by

(1− 1

2
)k =

1

2k
.

To solve the question we need that this probability is at most 1/n. Thus, setting k = dlog2(n)e is
sufficient. Then the runtime of the algorithm will be k · T (n) = dlog2(n)e · T (n).

Exercise 3: Randomized Partial 3-Coloring (7 Points)

The maximum 3-coloring problem asks for assigning one of the colors {1, 2, 3} to each node v ∈ V of
a graph G = (V,E) such that the number of edges {u, v} ∈ E for which u and v get different colors
is maximized. A simple randomized algorithm for the problem would be to (independently) assign a
uniform random color to each node.
What is the expected approximation ratio of this algorithm?

Hint: Consider the approximation ratio to be the minimum ratio of the algorithm solution to the
optimal solution over all input instances.

Sample Solution

Let G = (V,E) be the given graph with n = |V | and m = |E|. Let X denote the random variable
which indicates the number of edges where both endpoints have different colors. For a single edge
e ∈ E the probability that both endpoints have different colors is 2/3. Thus we obtain

E[X] =
∑
e∈E

2

3
=

2

3
·m.

Because any optimal algorithm can at most color the endpoints of all edges (= m) differently, we can
ensure an expected approximation ratio of 2/3.
Note: In the literature, the approximation ratio is often defined via Opt. Solution

Alg. Solution instead of Alg. Solution
Opt. Solution .

With this definition we could ensure an approximation ratio of 3/2.
Remark: One can also show that this approximation factor is tight: In a ring an optimal 3-coloring
really colors the endpoints of all m edges differently and our algorithm (in expectation) only colors the
endpoints of 2/3 of the edges differently.

Exercise 4: Max Cut (1+3+5+3 Points)

Let G = (V,E) with n = |V |,m = |E| be an undirected, unweighted graph. Consider the following
randomized algorithm: Every node v∈V joins the set S with probability 1

2 . The output is (S, V \S).

(a) What is the probability to obtain a cut?

(b) For e ∈ E let random variable Xe = 1 if e crosses the cut, and Xe = 0, else. Let X =
∑

e∈E Xe.
Compute the expectation E[X] of X.

(c) Show that with probability at least 1/3 this algorithm outputs a cut which is a 1
4 -approximation

to a maximum cut (i.e. a cut of maximum possible size is at most 4 times as large).

Remark: For a non-negative random variable X, the Markov inequality states that for all t > 0 we
have P(X ≥ t) ≤ E[X]

t .

Hint: Apply the Markov inequality to the number of edges not crossing the cut.

(d) Show how to use the above algorithm to obtain a 1
4 -approximation of a maximum cut with pro-

bability at least 1−
(
2
3

)k
for k ∈ N.

Remark: If you did not succeed in (c) you can use the result as a black box for (d).

Sample Solution

(a) We obtain no cut if no node joins S or if all nodes join S, because in either case one of the sets S
or V \ S is empty. The probability that one of these events happens is 2(12)n = (12)n−1.

(b) Each node joins either side of the cut with equal probability. For an edge e = {u, v} ∈ E the
probability that its endpoints u, v join different sides is two out of four equally probable outcomes
(u ∈ S and v /∈ S or u /∈ S and v ∈ S or u, v ∈ S or u, v /∈ S). Hence Pr(Xe=1) = 1

2 . We obtain

E[X] = E
[∑
e∈E

Xe

]
=
∑
e∈E

E[Xe] =
∑
e∈E

Pr(Xe = 1) =
m

2
.

(c) Let E be the event that the algorithm produces a cut of size less than m
4 . Then Pr(E) = Pr(X≤ m

4).

Define random variable Y as Y = m−X. Then E[Y] = m−E[X] = m−m
2 = m

2 . We get

Pr(E) = Pr(X ≤ m

4
)

= Pr(Y ≥ 3m

4
)

≤ E[Y]

(3m/4)
(Markov inequality)

=
m/2

3m/4
=

2

3

Hence the probability that the algorithm produces a cut of size less or equal m
4 is at most 2

3 , which
means with probability at least 1−2

3 = 1
3 we get a cut of size more than m

4 . Obviously the number
of edges that cross any cut is at most m. Therefore our algorithm outputs a 1

4 -approximation with
probability 1

3 .

(d) In order to guarantee a 1
4 -approximation of the maximum cut with probability 1−

(
2
3

)k
, we repeat

the above construction of max-cut algorithm k times and take the largest cut we find. Then the
probability that we do not get m

4 edges or more is at most (2/3)k, since all the repetitions are
independent and the probability of failure of each repetition is at most 2/3. In other words, the

probability that we get at least m
4 edges is at least 1−

(
2
3

)k
.

