
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
M. Ahmadi, P. Schneider

Algorithms Theory

Sample Solution Exercise Sheet 8
Due: Monday, 18th of February, 2019, 14:15 pm

This is a bonus exercise. You can earn points as usual but the threshold for exam admittance remains unchanged.

Exercise 1: Minimum Vertex Cover vs Maximum Clique (2+4 Points)

A vertex cover of a graph G = (V,E) is a set V ′ ⊆ V of nodes such that for all edges {u, v} ∈ E we
have {u, v} ∩ V ′ 6= ∅. The minimum vertex cover problem requires to find a vertex cover of minimum
cardinality.
A clique of graph G = (V,E) is a subset V ′ ⊆ V of nodes such that for all u, v ∈ V ′ it holds that
{u, v} ∈ E. The maximum clique problem requires to find a clique of maximum cardinality. Let us
define the complement of graph G = (V,E) as Ḡ = (V, Ē), where

Ē =
{
{u, v} | u, v ∈ V and {u, v} 6∈ E

}
.

(a) Given a minimum vertex cover for the complement Ḡ of graph G, explain how one can achieve
a maximum clique of G.

Let us assume that we are given a 2-approximation algorithm A for the minimum vertex cover problem.
Consider the following algorithm, denoted by B, which uses A as its subroutine to compute a clique
in graph G: It runs A on Ḡ and then uses the same technique as in part (a) to get a vertex cover V ′.

(b) Argue why the approximation ratio of B could be super-constant.

Sample Solution

(a) Having a minimum vertex cover C of Ḡ, one returns V \ C as a maximum clique of G.

Now let us explain why V \ C is a maximum clique of G. To do so, it is only enough to show
that for every vertex cover C ′ of Ḡ, V \C ′ is a clique of G. Consider an arbitrary pair of nodes u
and v (if any) in V \C ′. Then, since none of u and v is in C ′, edge {u, v} is not in Ḡ. Otherwise
C ′ would have not been a vertex cover of Ḡ. Therefore, edge {u, v} is in G. This implies that
V \ C ′ is a clique of G.

(b) Let us assume that we are given an n-node graph G such that the minimum vertex cover of
Ḡ is of size dn/2e. Then, the maximum clique of G is of size bn/2c. However, the given 2-
approximate algorithm might even return set C := V as the vertex cover of Ḡ, without violating
the guaranteed approximation ratio. Then, V \C is of size zero while the maximum clique is of
size Ω(n).

Exercise 2: Weighted Maximum Clique (10 Points)

Consider a graph G = (V,E) and a weight function w : V → {1, 2, . . . , n}. Let the weight of a clique
C in G be defined as the sum of the weights of the nodes in C. Then, the weighted maximum clique
problem requires to find a clique with maximum possible weight in G.
Let A be an α-approximation algorithm for the (unweighted) maximum clique problem. Using A,
provide an α-approximation algorithm for the weighted maximum clique problem.



Sample Solution

We first construct an unweighted graph G′ based on G. Then, we run the the given algorithm on G′ to
compute a clique C ′. Finally having C ′, we compute a clique C of G with the desired approximation.

Let V := {v1, . . . , vn}, where node vi is of weight wi. To construct G′ = (V ′, E′), we scan all the nodes
in V one by one and transform G to G′ as follows. For every i = 1, . . . , n, we replace vi with a clique
Ci of size wi. After replacing all the nodes, for any i, j ∈ {1, . . . , n}, we connect all the nodes of Ci to
all the nodes of Cj if and only if vi and vj are neighbors in G, i.e., {vi, vj} ∈ E.

Let us assume by running the given algorithm on G′, set C ′ is returned as an α-approximate clique
of G′. Then we construct the final solution C as follows. We add node v ∈ V into C if and only if at
least one of the nodes of the replacing clique of v is in C ′.

Then, C is shown to be an α-approximate solution for G by the following two facts.

1) The weight of C is at least as large as the size of C ′. This is true because for every node vi in C
we have at most wi nodes in C ′.

2) A maximum clique of G′ is of size at least the weight of a maximum clique of G. It is enough to
show that if G has a clique of weight c, then G′ must have a clique of size c. This is immediate
from the construction of G′ based on G.

Exercise 3: LRU with Potential Function (12 Points)

When studying online algorithms, the total (average) cost for serving a sequence of requests can often
be analyzed using amortized analysis. In the following, we will apply this to the paging problem, where
we are given a fast memory that can hold at most k pages and the goal is to minimize the number of
page misses.
We will analyze the competitive ratio of a paging algorithm by using a potential function. Recall that
a potential function assigns a non-negative real value to each system state. In the context of online
algorithms, we think of running an optimal offline algorithm and an online algorithm side by side and
the system state is given by the combined states of both algorithms.
Consider the LRU algorithm, i.e., the online paging algorithm that always replaces the page that has
been used least recently. Let σ = (σ(1), σ(2), . . . , σ(m)) be an arbitrary sequence of page requests.
Let OPT be some optimal offline algorithm. You can assume that OPT evicts at most one page in
each step (e.g., think of OPT as the LFD algorithm). At any time-step t (i.e., after serving requests
σ(1), . . . , σ(t)), let SLRU(t) be the set of pages in LRU’s fast memory and let SOPT(t) be the set of
pages contained in OPT’s fast memory. We define S(t) := SLRU(t) \ SOPT(t).
Further, for each time-step t we assign integer weights w(p, t) ∈ {1, . . . , k} to each page p ∈ SLRU(t)
such that for any two pages p, q ∈ SLRU(t), w(p, t) < w(q, t) iff the last request for p occurred before
the last request for q (i.e., the pages in SLRU are numbered from 1, . . . , k according to times of their
last occurrences, where the least recently used page has weight 1). We define the potential function
at time t to be

Φ(t) :=
∑

p∈S(t)

w(p, t).

As usual, we define the amortized cost aLRU(t) for serving request σ(t) as

aLRU(t) := cLRU(t) + Φ(t)− Φ(t− 1),

where cLRU(t) is the actual cost for serving request σ(t). Note that cLRU(t) = 1 if a page fault
for algorithm LRU occurs when serving request σ(t) and cLRU(t) = 0 otherwise. Similarly, we define
cOPT(t) to be the actual cost of the optimal offline algorithm for serving request σ(t). Again, cOPT(t) =
1 if OPT encounters a page fault in step t and cOPT(t) = 0 otherwise. In order to show that the
competitive ratio of the algorithm is at most k, you need to show that for every request σ(t),

aLRU(t) ≤ k · cOPT(t).



Sample Solution

To show that the LRU algorithm is k-competitive, it is required to show that, for all t

cLRU(t) + Φ(t)− Φ(t− 1) ≤ k · cOPT(t) (1)

Let σ = (σ(1), σ(2), . . . , σ(m)) be an arbitrary sequence of requests. Consider an arbitrary request
σ(t) = p and W.l.o.g. assume that OPT serves the request earlier than LRU algorithm.
In case both algorithms OPT and LRU have no page fault on σ(t) = p, inequality (1) holds. Potential
function can not increase (thus, it can decrease) and costs of both operations are zero.
If OPT does not have a page fault on σ(t) = p, then cOPT = 0 and the potential function does not
change. If OPT does have a page fault, cOPT = 1 and it needs to evict a page. If the page we evict
is not in the LRU’s fast memory, the potential function does not change. And if this page is in the
LRU’s fast memory, the set S gets an additional element and the potential function increases by at
most k.
Now, if we consider the LRU algorithm, if it does not have a page fault on σ(t), then cLRU = 0 and
potential function does not change. If LRU has a page fault, cLRU = 1 and we show that the value
of potential function decreases by at least 1. In fact, before LRU serves the σ(t) = p request, p is
only in OPT’s fast memory. By symmetry, there must be a page that is only in LRU’s fast memory,
so there has to exist a page q ∈ S. If q is evicted, then its weight is at least 1. Hence, potential
function decreases by at least 1. Otherwise, if another page gets evicted, and p is loaded into LRU’s
fast memory, p gets weight at most k and all other pages in the set S including q decrease their weights
by 1, so the potential function decreases by 1.
In case OPT and LRU have page fault and both need to evict a page, concluding the changes of cases
described above, the costs are 1 and potential function increases by at most k−1 (increases by at most
k due to the page fault of OPT and decreases by at least 1 due to page fault of LRU). Inequality (1)
still holds: 1 + k − 1 ≤ k · 1
To conclude, every time OPT has a fault, the potential function increases by at most k and every time
LRU has a fault, the potential function decreases by at least 1 and the inequality (1) always holds.

Exercise 4: Parallel Merging of Two Sorted Arrays (2+4+6 Points)

You are given two sorted arrays A = [a1, . . . , an] and B = [b1, . . . , bn], each of size n. The goal is to
merge them into one sorted array C = [c1, . . . , c2n] of length 2n in the CREW PRAM model.

(a) We first consider the following subproblem. Given an index i ∈ {1, . . . , n}, we want to find the
final position j ∈ {1, . . . , 2n} of the value ai in the array C. Give a fast sequential algorithm to
compute j. What is the (sequential) running time of your algorithm?

(b) Use the above algorithm to construct a parallel merging algorithm. The work T1 of your algorithm
should be at most O(n log n) and the span (or depth) T∞ should be (asymptotically) as small as
possible. What is the span T∞ of your algorithm?

(c) We now want to solve the merging problem in constant time (in parallel). Show that by using
O(n) processes, the subproblem considered in (a) can be solved in O(1) time. Use this to get a
constant-time parallel algorithm to merge the two sorted arrays. How many processors do you
need to achieve a constant-time algorithm?

Sample Solution

Assume that all arrays are sorted in ascending order.

(a) Note that the first (i− 1) values in A are before ai in C, because the array A is sorted. Now we
have to find out how many values in B are before ai. That is to find the largest index k such that
bk ≤ ai. One easy way for this is to compare ai with the elements of B one by one starting from



b1 and find the index k. This will take O(n) time in general, since the size of the array B is n.
However, we can do it faster using the divide and conquer approach (this is exactly the binary
search). We recursively break the array B into two parts of equal size and check in which side
ai falls (and ignore the other side). Using divide and conquer approach we can find the index
k in O(log n) time. Once we find the k, then the final position of ai would be (i − 1) + k + 1
(assuming the array indices starting from 1).

(b) In the above algorithm, we see that one processor can find the final position of a value ai in
O(log n) time. Now we consider n processors corresponding to each value ai in A and compute
their positions in the output array C in parallel. All the processors can find the final position
of every values of A in O(log n) time. Then in the same way, we compute the position of all the
values of B in C using n processors and O(log n) time. Hence, we can merge the two sorted arrays
into one sorted array in O(log n) time, using n processors. The total work is T1 = O(n log n) and
the span is T∞ = O(log n).

(c) Consider a particular value ai of A and we want to find the final position of ai in C. Let us take
n processors pk : k = 1, 2, . . . , n. Each processor pk compares the value ai with two consecu-
tive values bk−1 and bk in B. All the processors do it in parallel. (Note that the array indices
starting from 1, so we assume b0 = −∞ for consistency). Since the values bk are in ascending
order (sorted), there will be only one processor pt which see that bt−1 ≤ ai and bt > ai. That
is there are exactly t− 1 values in the array B which are smaller than ai. Hence, the processor
pt can decide the final position of ai which would be (i− 1) + (t− 1) + 1 (since there are i− 1
values smaller than ai in A). The processor pt can write the value ai safely in the final array
C. Note that the processor pn may observe that bn ≤ ai, then the final position of ai would
be (i − 1) + n + 1. Since all the processors computing this in parallel, it takes constant time.
Also we used n processors for this. We can extend this algorithm for all the values in A using
n2 processors in O(1) time: for each ai in A, run the algorithm in parallel. For this, we need a
total n2 processors and they can write all the values ai in the correct place in C. Notice that
there would not be any conflicts when writing in C, since a processor pt only writes the value in
one cell of the array C. Thus we can put all the values of A in the output array C in constant time.

Now we want to put all the values of B in C. Again we can use the same approach as above i.e.,
we find the right index of a particular value bj in B by comparing with values in A. We have
to be a bit careful in this case. During the comparison of a value bj with two consecutive values
ak−1 and ak, each processor pk checks if ak−1 < bj and ak ≥ bj , i.e., processors find index the
t, for which at−1 < bj and at ≥ bj holds. This “strict” less inequality is necessary to avoid any
concurrent writing or conflicts in C. The processor pt which found the index t, can decide the
final position of ai as (j − 1) + (t− 1) + 1.

Therefore, we can merge the two sorted array of size n into one sorted array in O(1) time using
n2 processors.


