Theoretical Computer Science - Bridging Course
Summer Term 2018
Exercise Sheet 6

for getting feedback submit (electronically) before the start of the tutorial on 3rd of December 2018.

Exercise 1: Semi-Decidable vs. Recursively Enumerable \(\textbf{(5 Points)}\)

Very often people in computer science use the terms semi-decidable and recursively enumerable equivalently. The following exercise shows in which way they actually are equivalent. We first recall the definition of both terms.

A language \(L\) is semi-decidable if there is a Turing machine which accepts every \(w \in L\) and does not accept any \(w \notin L\) (this means the TM can either reject \(w \notin L\) or simply not stop for \(w \notin L\)).

A language is recursively enumerable if there is a Turing machine which eventually outputs every word \(w \in L\) and never outputs a word \(w \notin L\).

(a) Show that any recursively enumerable language is semi-decidable.

(b) Show that any semi-decidable language is recursively enumerable.

Exercise 2: Halting Problem \(\textbf{(3+2+2+2 Points)}\)

The special halting problem is defined as

\[H_s = \{ \langle M \rangle | \langle M \rangle \text{ encodes a TM and } M \text{ halts on } \langle M \rangle \} \]

(a) Show that \(H_s\) is undecidable.

\textit{Hint: Assume that }M\textit{ is a TM which decides }H_s\textit{ and then construct a TM which halts iff }M\textit{ does not halt. Use this construction to find a contradiction.}

(b) Show that the special halting problem is recursively enumerable.

(c) Show that the complement of the special halting problem is not recursively enumerable.

\textit{Hint: What can you say about a language }L\textit{ if }L\textit{ and its complement are recursively enumerable? (if you make some observation for this, also prove it)}

(d) Let \(L_1\) and \(L_2\) be recursively enumerable languages. Is \(L_1 \setminus L_2\) recursively enumerable as well?

(e) Is \(L = \{ w \in H_s \mid |w| \leq 1742 \}\) decidable? Explain your answer!

Exercise 3: Undecidability \(\textbf{(5 Points)}\)

Fix an enumeration of all Turing machines (that have input alphabet \(\Sigma\)): \(\langle M_1 \rangle, \langle M_2 \rangle, \langle M_3 \rangle, \ldots\)

Fix also an enumeration of all words over \(\Sigma\): \(w_1, w_2, w_3, \ldots\).

Prove that language \(L = \{ w \in \Sigma^* \mid w = w_i, \text{ for some } i, \text{ and } M_i \text{ does not accept } w_i \}\) is not Turing recognizable.

\textit{Hint: Try to find a contradiction to the existence of a Turing machine that recognizes }L.