Exercise 1: The class P

Show that the following languages are in P.

(a) 5-CYCLE = $\{\langle G \rangle \mid G$ is a graph and contains a cycle of length $5\}$.

Remark: A cycle of length 5 in G are five distinct nodes v_0, \ldots, v_4 such that the edges $\{v_i, v_{i+1 \mod 5}\}$, $i = 0, \ldots, 4$ exist in G.

(b) $L = \{a^n b^{3n} \mid n \geq 0\}$

(c) 17-INDEPENDENT SET = $\{\langle G \rangle \mid G$ is a graph and contains an independent set of size $17\}$.

Remark: An independent set of a graph with size s is a set $S \subseteq V$, $|S| = s$ such that $\{v, w\} \notin E$ for all $u, w \in S$.

(d) Find a proper citation (e.g., via google) which states whether $\text{PRIMES}=\{\langle n \rangle \mid n \in \mathbb{N}$ is prime$\}$ is in P or not.

Repetition of Course Material $(0$ Points$)$

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2. Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f : \Sigma_1^* \rightarrow \Sigma_2^*$ exists, that can be calculated in polynomial time and

$$\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.$$

Language L is called \mathcal{NP}-hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

$$L \mathcal{NP}$-hard $\iff \forall L' \in \mathcal{NP} : L' \leq_p L.$$

The reduction relation '\leq_p' is transitive ($L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ \Rightarrow $L_1 \leq_p L_3$). Therefore, in order to show that L is \mathcal{NP}-hard, it suffices to reduce a known \mathcal{NP}-hard problem \tilde{L} to L, i.e. $\tilde{L} \leq_p L$.

Finally a language is called \mathcal{NP}-complete (\leftrightarrow: $L \in \mathcal{NP}C$), if

1. $L \in \mathcal{NP}$ and
2. L is \mathcal{NP}-hard.
Exercise 2: The Class \(\mathcal{NP} \)

This exercise (and similar ones) is really (!!) important for the course.

Show \(\text{HittingSet} := \{ \langle U, S, k \rangle \mid \text{universe } U \text{ has subset of size } \leq k \text{ that hits all sets in } S \subseteq 2^U \} \in \mathcal{NP}. \)

Use that \(\text{VertexCover} := \{ \langle G, k \rangle \mid \text{Graph } G \text{ has a vertex cover of size at most } k \} \in \mathcal{NP}. \)

Remark: A hitting set \(H \subseteq U \) for a given universe \(U \) and a set \(S = \{ S_1, S_2, \ldots, S_m \} \) of subsets \(S_i \subseteq U \), fulfills the property \(H \cap S_i \neq \emptyset \) for \(1 \leq i \leq m \) (\(H \) 'hits' at least one element of every \(S_i \)).

A vertex cover is a subset \(V' \subseteq V \) of nodes of \(G = (V, E) \) such that every edge of \(G \) is adjacent to a node in the subset.

Hint: For the poly. transformation (\(\leq_p \)) you have to describe an algorithm (with poly. run-time!) that transforms an instance \(\langle G, k \rangle \) of \(\text{VertexCover} \) into an instance \(\langle U, S, k \rangle \) of \(\text{HittingSet} \), s.t. a vertex cover of size \(\leq k \) in \(G \) becomes a hitting set of \(U \) of size \(\leq k \) for \(S \) and vice versa(!).

\(^1\)The power set \(2^U \) of some ground set \(U \) is the set of all subsets of \(U \). So \(S \subseteq 2^U \) is a collection of subsets of \(U \).