Exercise 1: The class P

Show that the following languages are in P.

(a) 5-CYCLE = \{⟨G⟩ | G is a graph and contains a cycle of length 5}\.

\textit{Remark: A cycle of length 5 in G are five distinct nodes }v_0, \ldots, v_4\ \text{such that the edges } \{v_i, v_{i+1 \mod 5}\}, i = 0, \ldots, 4 \text{ exist in G.}

(b) \ L = \{a^n b^3 n | n \geq 0\}

(c) 17-INDEPENDENT SET = \{⟨G⟩ | G is a graph and contains an independent set of size 17\}.

\textit{Remark: An independent set of a graph with size } s \ \text{is a set } S \subseteq V, |S| = s \ \text{such that } \{v, w\} \notin E \ \text{for all } u, w \in S.

(d) Find a proper citation (e.g., via google) which states whether PRIMES=\{⟨n⟩ | n \in \mathbb{N} \text{ is prime}\} is in P or not.

Repetition of Course Material \ (0 \ \text{Points})

Let \ L_1, L_2 \ \text{be languages (problems) over alphabets } \Sigma_1, \Sigma_2. \ \text{Then } L_1 \leq_p L_2 \ (L_1 \ \text{is polynomially reducible to } L_2), \ \text{iff a function } f : \Sigma_1^* \rightarrow \Sigma_2^* \ \text{exists, that can be calculated in polynomial time and}

\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.

Language \ L \ \text{is called } \mathcal{NP}-\text{hard, if all languages } L' \in \mathcal{NP} \ \text{are polynomially reducible to } L, \ i.e.

L \ \mathcal{NP}-\text{hard} \iff \forall L' \in \mathcal{NP} : L' \leq_p L.

The reduction relation ‘≤p’ is transitive \ (L_1 \leq_p L_2 \ \text{and } L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3). \ \text{Therefore, in order to show that } L \ \text{is } \mathcal{NP}-\text{hard, it suffices to reduce a known } \mathcal{NP}-\text{hard problem } \tilde{L} \ \text{to } L, \ i.e. } \tilde{L} \leq_p L.

Finally a language is called \mathcal{NP}-complete (⇔: L \in \mathcal{NP\overline{C}}), \ i.e.

1. \ L \in \mathcal{NP} \ \text{and}

2. \ L \ \text{is } \mathcal{NP}-\text{hard.}
Exercise 2: The Class \mathcal{NP}

(7 Points)

This exercise (and similar ones) is really (!!) important for the course.

Show $\text{HittingSet} := \{\langle U, S, k \rangle \mid \text{universe } U \text{ has subset of size } \leq k \text{ that hits all sets in } S \subseteq 2^U\} \in \mathcal{NP}$.

Use that $\text{VertexCover} := \{\langle G, k \rangle \mid \text{Graph } G \text{ has a vertex cover of size at most } k\} \in \mathcal{NP}$.

Remark: A hitting set $H \subseteq U$ for a given universe U and a set $S = \{S_1, S_2, \ldots, S_m\}$ of subsets $S_i \subseteq U$, fulfills the property $H \cap S_i \neq \emptyset$ for $1 \leq i \leq m$ (H ’hits’ at least one element of every S_i).

A vertex cover is a subset $V' \subseteq V$ of nodes of $G = (V, E)$ such that every edge of G is adjacent to a node in the subset.

Hint: For the poly. transformation (\leq_p) you have to describe an algorithm (with poly. run-time!) that transforms an instance $\langle G, k \rangle$ of VertexCover into an instance $\langle U, S, k \rangle$ of HittingSet, s.t. a vertex cover of size $\leq k$ in G becomes a hitting set of U of size $\leq k$ for S and vice versa(!).

1The power set 2^U of some ground set U is the set of all subsets of U. So $S \subseteq 2^U$ is a collection of subsets of U.