Exercise 1: The class \mathcal{NP} (8 Points)

As this type of exercise is really important for the course we have another one.

A subset of the nodes of a graph G is a dominating set if every other node of G is adjacent to some node in the subset. Let

$$\text{DOMINATINGSet} = \{ \langle G, k \rangle \mid \text{has a dominating set with } k \text{ nodes} \}.$$

Show that DOMINATINGSet is in \mathcal{NP}. Use that

$$\text{VERTEXCover} := \{ \langle G, k \rangle \mid \text{Graph } G \text{ has a vertex cover of size at most } k \} \in \mathcal{NP}.$$

Remark: A VERTEXCover is a subset $V' \subseteq V$ of nodes of $G = (V, E)$ such that every edge of G is adjacent to a node in the subset.

Exercise 2: Complexity Classes: Big Picture (2+3+2 Points)

(a) Why is $\mathcal{P} \subseteq \mathcal{NP}$?

(b) Show that $\mathcal{P} \cap \mathcal{NP} = \emptyset$ if $\mathcal{P} \neq \mathcal{NP}$.

 Hint: Assume that there exists a $L \in \mathcal{P} \cap \mathcal{NP}$ and derive a contradiction to $\mathcal{P} \neq \mathcal{NP}$.

(c) Give a Venn Diagram showing the sets $\mathcal{P}, \mathcal{NP}, \mathcal{NP}$ for both cases $\mathcal{P} \neq \mathcal{NP}$ and $\mathcal{P} = \mathcal{NP}$.

 Remark: Use the results of (a) and (b) even if you did not succeed in proving those.
Exercise 3: The class \mathcal{P}

(1+2+2+1 Points)

Clique:

- A *clique* of a graph $G = (V, E)$ is a subset $Q \subseteq V$ such that for all $u, v \in Q : \{u, v\} \in E$.
- **Input**: Encoding $\langle G, k \rangle$ of an undirected, unweighted, simple graph $G = (V, E)$ and $k \in \mathbb{N}$.
- **Question**: Is there a clique of size at least k?

\mathcal{P} is the set of languages which can be decided by an algorithm whose runtime can be bounded by $p(n)$, where p is a polynomial and n the size of the respective input (problem instance). Show that the following languages (\cong problems) are in the class \mathcal{P}. Since it is typically easy (i.e. feasible in polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider well-formed inputs. Use the O-notation to bound the run-time of your algorithm.

(a) 1-DominatingSet
(b) 2-VertexColoring
(c) 3-Clique
(d) Any context-free language L.

Hint: You can use results from previous exercise sheets.