Albert-Ludwigs-Universität, Inst. für Informatik Prof. Dr. Fabian Kuhn Philipp Bamberger, Yannic Maus

Theoretical Computer Science - Bridging Course Summer Term 2018 Exercise Sheet 9

for getting feedback submit (electronically) before the start of the tutorial on 7th of January 2019.

Exercise 1: The class \mathcal{NPC}

As this type of exercise is really important for the course we have another one.

A subset of the nodes of a graph G is a **dominating set** if every other node of G is adjacent to some node in the subset. Let

DOMINATINGSET = { $\langle G, k \rangle$ | has a dominating set with k nodes}.

Show that DOMINATINGSET is in \mathcal{NPC} . Use that

VERTEXCOVER := { $\langle G, k \rangle$ | Graph G has a vertex cover of size at most k} $\in \mathcal{NPC}$.

Remark: A VERTEXCOVER is a subset $V' \subseteq V$ of nodes of G = (V, E) such that every edge of G is adjacent to a node in the subset.

Exercise 2: Complexity Classes: Big Picture (2+3+2 Points)

- (a) Why is $\mathcal{P} \subseteq \mathcal{NP}$?
- (b) Show that $\mathcal{P} \cap \mathcal{NPC} = \emptyset$ if $\mathcal{P} \neq \mathcal{NP}$. Hint: Assume that there exists a $L \in \mathcal{P} \cap \mathcal{NPC}$ and derive a contradiction to $\mathcal{P} \neq \mathcal{NP}$.
- (c) Give a Venn Diagram showing the sets $\mathcal{P}, \mathcal{NP}, \mathcal{NPC}$ for both cases $\mathcal{P} \neq \mathcal{NP}$ and $\mathcal{P} = \mathcal{NP}$. Remark: Use the results of (a) and (b) even if you did not succeed in proving those.

(8 Points)

Exercise 3: The class \mathcal{P}

CLIQUE:

- A clique of a graph G = (V, E) is a subset $Q \subseteq V$ such that for all $u, v \in Q : \{u, v\} \in E$.
- Input: Encoding $\langle G, k \rangle$ of an undirected, unweighted, simple graph G = (V, E) and $k \in \mathbb{N}$.
- Question: Is there a clique of size at least k?

 \mathcal{P} is the set of languages which can be decided by an algorithm whose runtime can be bounded by p(n), where p is a polynomial and n the size of the respective input (problem instance). Show that the following languages (\cong problems) are in the class \mathcal{P} . Since it is typically easy (i.e. feasible in polynomial time) to decide whether an input is well-formed, your algorithm only needs to consider well-formed inputs. Use the \mathcal{O} -notation to bound the run-time of your algorithm.

- (a) 1-DominatingSet
- (b) 2-VertexColoring
- (c) 3-CLIQUE
- (d) Any context-free language L.

Hint: You can use results from previous exercise sheets.