Exam Theoretical Computer Science - Bridging Course

Thursday, August 17, 2017, 10:00-12:00

Do not open or turn until told so by the supervisor!

- Write your **name** and **matriculation number** on this page and sign the document!
- Write your name on **all sheets**!
- Your **signature** confirms that you have answered all exam questions without any help, and that you have notified exam supervision of any interference.
- Write legibly and only use a pen (ink or ball point). Do **not use red**! Do **not use a pencil**!
- This is an **open book exam** therefore printed or hand-written material is allowed.
- However, **no electronic devices** are allowed.
- There are **eight tasks** (with several sub-tasks each) and there is a **total of 120 points**.
- **50 points are sufficient** in order to pass the exam.
- Only **one solution per task** is considered! Make sure to strike out alternative solutions, otherwise the one yielding the minimal number of points is considered.
- **Detailed steps** might help you to get more points in case your final result is incorrect.
- The keywords **Show...** or **Prove...** indicate that you need to prove or explain your answer carefully.
- The keywords **Give...** or **State...** indicate that you only need to provide a plain answer.
- You may use information given in a **Hint** without explaining them.
- **Read each task thoroughly** and make sure you understand what is expected from you.
- **Raise your hand** if you have a question regarding the formulation of a task.
- **Use the space below each task and the back of the sheet for your solution.** The last two sheets of this exam are blank and can be used for solutions. If you need additional sheets, raise your hand.

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>16</td>
<td>120</td>
</tr>
</tbody>
</table>
Task 1: Basic Mathematical Skills (14 Points)

(a) Prove the equation \(\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \) for all \(n \in \mathbb{N}_0 \) by induction on \(n \). (5 Points)

(b) Let \(A, B \) be sets. We define the symmetric difference \(A \Delta B := (A \setminus B) \cup (B \setminus A) \).

Prove the following implication: (4 Points)

\[
A \cap B \neq \emptyset \implies A \Delta B \neq A \cup B.
\]

Remark: \(A \setminus B := A \cap \overline{B} \) is the 'set minus' operator, describing all elements of \(A \) that are not in \(B \). Instead of a formal proof, you can show the implication with Venn diagrams.

(c) Give the minimum and the maximum number of edges an undirected, bipartite graph \(G = (V, E) \) with \(n := |V| \) nodes can have. You may assume that \(n \) is even. (1+4 Points)

Remark: A graph \(G = (V, E) \) is bipartite if its nodes \(V \) can be partitioned into two disjoint sets \(U, W \subseteq V \), such that there are no edges in \(E \) among any two nodes in \(U \), and the same is true for \(W \). That is, for all \(\{v_1, v_2\} \in E \) it holds that \(v_1 \) and \(v_2 \) are not in the same part.
Task 2: Regular Languages (17 Points)

Consider the following Deterministic Finite Automaton (DFA) A over the alphabet $\{a, b\}$.

(a) Give the shortest string accepted by A. (1 Points)

(b) Give an infinite set of strings that are accepted by A and consist only of b’s. (3 Points)

(c) Describe the language $L(A)$ recognized by A (as a set or verbally). (4 Points)

(d) Now consider the language $L(\gamma)$ given by the regular expression $\gamma := (ab)^*(ba)^*$. Give a DFA that recognizes $L(\gamma)$ and has at most four states. (6 Points)

Remark: You can give a non-deterministic finite automaton (NFA) for a penalty of 2 points or an automaton with more than four states for a penalty of 1 point for each additional state.

(e) Let L be the language consisting of words of the form $w_1w_2w_3$ with $w_1, w_2, w_3 \in \{a, b, c\}^*$ and w_1 contains no a’s and w_2 contains no b’s and w_3 contains no c’s. Give a regular expression that generates L. (3 Points)
Task 3: Context-Free Languages (15 Points)

Let $L = \{ss^{RC} | s \in \{0, 1\}^*\}$ be a language over alphabet $\{0, 1\}$, where s^{RC} describes the reverse complement of a string $s \in \{0, 1\}^*$, obtained by reversing the order of symbols in s and then exchanging every 0 in s with 1 and every 1 in s with 0.

(a) State whether there is a string in L with an unequal number of zeros and ones. (1 Points)

(b) Give a context-free grammar that generates L. (3 Points)

(c) Give a Pushdown Automaton (PDA) that recognizes L. (5 Points)

(d) Prove that L is not a regular language by using the Pumping Lemma. (6 Points)
Task 4: Turing machines (14 Points)

(a) Give a comparison of the set of languages recognized by deterministic Turing machines with the set of languages recognized by non-deterministic Turing machines. (2 Points)

(b) State two differences between deterministic and non-deterministic Turing machines.

 Remark: You obtain 1 point for the first difference and 2 points for the second. (1+2 Points)

(c) One can define a variant of the Turing machine which allows three actions of the read/write-head: \(\{L, R, S\} \), where \(S \) means that the head stands still during that step.

 Let \(M_1 \) be a Turing machine that uses head movements \(\{L, R, S\} \). Give an explicit construction procedure that transfers \(M_1 \) into a Turing machine \(M_2 \) that uses only head movements \(\{L, R\} \) and recognizes the same language, i.e. \(L(M_1) = L(M_2) \). (5 Points)

(d) Briefly explain how to construct (or construct) a Turing machine for the language defined by the automaton depicted in Task 2 of this exam. (4 Points)
Task 5: \mathcal{O} - Notation

State whether the following claims are true or false (1 point each). Then prove or disprove the claim (6 points for (a) and 7 points for (b)). Use the definition of the \mathcal{O}-notation.

(a) $n\sqrt{2} \in \mathcal{O}(\sqrt{2} \cdot n)$. \textbf{Hint:} $\sqrt{2} > 1$.

(b) $2\sqrt{n} \in \mathcal{O}((\sqrt{2})^n)$.

\begin{align*}
\text{(1+6 Points)} & \\
\text{(1+7 Points)} &
\end{align*}
Task 6: Decidability (13 Points)

(a) Consider the problem COLORING:

\[
\text{COLORING} := \{ \langle G, k \rangle \mid \text{undirected graph } G \text{ has a } k\text{-coloring} \}.
\]

A k-coloring of \(G = (V, E) \) is an assignment \(c : V \rightarrow \{1, \ldots, k\} \) of nodes to colors, such that no equally colored nodes are adjacent, i.e., for all edges \(\{u, v\} \in E \) we have \(c(u) \neq c(v) \).

(i) Show that COLORING is decidable by giving an algorithm (abstract description or pseudo-code) that decides whether a graph has a k-coloring. (6 Points)

(ii) Explain why your algorithm accepts exactly the instances \(\langle G, k \rangle \) which have a k-coloring and why it always halts. (2+1 Points)

(b) Consider the problem MULTI PARTITION

\[
\text{MULTI PARTITION} := \{ \langle G, k \rangle \mid \text{undirected graph } G \text{ has a } k\text{-partition} \}.
\]

A k-partition of \(G = (V, E) \) is a partition of \(V \) into \(k \) disjoint subsets \(V_1, \ldots, V_k \) such that there are no edges among nodes from two different subsets. Formally: For all edges \(\{u, v\} \in E \) it holds that \(u \) and \(v \) are in different subsets, i.e., \(u \in V_i, v \in V_j \) with \(i \neq j \).

A decider for COLORING can be used to show the decidability of MULTI PARTITION. Explain how to use your algorithm for COLORING to decide MULTI PARTITION. (4 Points)

Remark: If you did not succeed in giving an algorithm that decides COLORING in (a), you may assume that you have such an algorithm.
Task 7: Complexity Theory (16 Points)

(a) Give a language which is in \mathcal{NP} but not in \mathcal{P}. Assume that $\mathcal{P} \neq \mathcal{NP}$! (2 Points)

(b) Give a language which is neither in \mathcal{P} nor in \mathcal{NP}. (2 Points)

(c) Given a set U of n elements (‘universe’) and a collection $S \subseteq 2^U$ of m subsets of U, a selection $C_1, \ldots, C_k \in S$ of k sets is called a set cover of size k if $C_1 \cup \ldots \cup C_k = U$. The SETCOVER-problem is defined as

$$\text{SETCOVER} := \{(U, S, k) \mid U \text{ is a set, } S \subseteq 2^U \text{ and there is a set cover for } (U, S) \text{ of size } k\}.$$

Assume that we already know that the problem VERTEXCOVER is \mathcal{NP}-complete

$$\text{VERTEXCOVER} := \{(G, k) \mid \text{undirected graph } G \text{ has a vertex cover of size at most } k\}.$$

Given a graph $G = (V, E)$, a vertex cover is a subset $V' \subseteq V$ of nodes of G such that every edge of G is adjacent to a node in the subset V'.

Show that SETCOVER is \mathcal{NP}-complete. (12 Points)

Hint: For the polynomial reduction, let the edges E of a given instance of the VERTEXCOVER problem be the universe U for the associated instance of the SETCOVER problem.
Task 8: Logic (16 Points)

(a) Consider the following propositional formula
\[\psi := (x \land y \rightarrow z \lor w) \land (y \rightarrow x) \land (z \land y \rightarrow 0) \land (w \land y \rightarrow 0) \land y. \]

(i) Transfer \(\psi \) into an equivalent formula in **conjunctive normal form (CNF)**. (3 Points)

(ii) Use the **resolution calculus** to show that \(\psi \) is unsatisfiable. (5 Points)

(b) Consider the following **first order logical** formulae
\[
\begin{align*}
\varphi_1 &:= \forall x R(x, x) \\
\varphi_2 &:= \forall x \forall y R(x, y) \rightarrow (\exists z R(x, z) \land R(z, y)) \\
\varphi_3 &:= \exists x \exists y (\neg R(x, y) \land \neg R(y, x))
\end{align*}
\]
where \(x, y \) are variable symbols and \(R \) is a binary predicate. Give an interpretation

(i) \(I_1 \) which is a **model** of \(\varphi_1 \land \varphi_2 \). (3 Points)

(ii) \(I_2 \) which is **no model** of \(\varphi_1 \land \varphi_2 \land \varphi_3 \). (2 Points)

(iii) \(I_3 \) which is a **model** of \(\varphi_1 \land \varphi_2 \land \varphi_3 \). (3 Points)

Remark: No proof required.