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Task 1: Basic Mathematical Skills (14 Points)

(a) Prove the equation
∑n

i=0 2i = 2n+1 − 1 for all n ∈ N0 by induction on n. (5 Points)

(b) Let A,B be sets. We define the symmetric difference A∆B := (A \B) ∪ (B \ A).

Prove the following implication: (4 Points)

A ∩B 6= ∅ =⇒ A∆B 6= A ∪B.

Remark: A \ B := A ∩ B is the ’set minus’ operator, describing all elements of A that are
not in B. Instead of a formal proof, you can show the implication with Venn diagrams.

(c) Give the minimum and the maximum number of edges an undirected, bipartite graph
G = (V,E) with n := |V | nodes can have. You may assume that n is even. (1+4 Points)

Remark: A graph G = (V,E) is bipartite if its nodes V can be partitioned into two disjoint
sets U,W ⊆ V , such that there are no edges in E among any two nodes in U , and the same
is true for W . That is, for all {v1, v2} ∈ E it holds that v1 and v2 are not in the same part.
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Task 2: Regular Languages (17 Points)

Consider the following Deterministic Finite Automaton (DFA) A over the alphabet {a, b}.

q0start q1

q2 q3

a

b

a

b

a

b

a

b

(a) Give the shortest string accepted by A. (1 Points)

(b) Give an infinite set of strings that are accepted by A and consist only of b’s. (3 Points)

(c) Describe the language L(A) recognized by A (as a set or verbally). (4 Points)

(d) Now consider the language L(γ) given by the regular expression γ := (ab)∗(ba)∗.

Give a DFA that recognizes L(γ) and has at most four states. (6 Points)

Remark: You can give a non-deterministic finite automaton (NFA) for a penalty of 2 points
or an automaton with more than four states for a penalty of 1 point for each additional state.

(e) Let L be the language consisting of words of the form w1w2w3 with w1, w2, w3∈{a, b, c}∗
and w1 contains no a’s and w2 contains no b’s and w3 contains no c’s.

Give a regular expression that generates L. (3 Points)
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Task 3: Context-Free Languages (15 Points)

Let L = {ssRC | s ∈ {0, 1}∗} be a language over alphabet {0, 1}, where sRC describes the
reverse complement of a string s ∈ {0, 1}∗, obtained by reversing the order of symbols in s
and then exchanging every 0 in s with 1 and every 1 in s with 0.

(a) State whether there is a string in L with an unequal number of zeros and ones. (1 Points)

(b) Give a context-free grammar that generates L. (3 Points)

(c) Give a Pushdown Automaton (PDA) that recognizes L. (5 Points)

(d) Prove that L is not a regular language by using the Pumping Lemma. (6 Points)
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Task 4: Turing machines (14 Points)

(a) Give a comparison of the set of languages recognized by deterministic Turing machines
with the set of languages recognized by non-deterministic Turing machines. (2 Points)

(b) State two differences between deterministic and non-deterministic Turing machines.

Remark: You obtain 1 point for the first difference and 2 points for the second. (1+2 Points)

(c) One can define a variant of the Turing machine which allows three actions of the read/write-
head: {L,R, S}, where S means that the head stands still during that step.

Let M1 be a Turing machine that uses head movements {L,R, S}. Give an explicit
construction procedure that transfers M1 into a Turing machine M2 that uses only head
movements {L,R} and recognizes the same language, i.e. L(M1) = L(M2). (5 Points)

(d) Briefly explain how to construct (or construct) a Turing machine for the language defined
by the automaton depicted in Task 2 of this exam. (4 Points)
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Task 5: O - Notation (15 Points)

State whether the following claims are true or false (1 point each). Then prove or disprove the
claim (6 points for (a) and 7 points for (b)). Use the definition of the O-notation.

(a) n
√
2 ∈ O(

√
2 · n). Hint:

√
2 > 1. (1+6 Points)

(b) 2
√
n ∈ O((

√
2)n). (1+7 Points)
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Task 6: Decidability (13 Points)

(a) Consider the problem COLORING:

COLORING := {〈G, k〉 |undirected graph G has a k-coloring}.

A k-coloring of G= (V,E) is an assignment c : V →{1, . . . , k} of nodes to colors, such
that no equally colored nodes are adjacent, i.e., for all edges {u, v}∈E we have c(u) 6=c(v).

(i) Show that COLORING is decidable by giving an algorithm (abstract description or
pseudo-code) that decides whether a graph has a k-coloring. (6 Points)

(ii) Explain why your algorithm accepts exactly the instances 〈G, k〉 which have a k-
coloring and why it always halts. (2+1 Points)

(b) Consider the problem MULTIPARTITION

MULTIPARTITION := {〈G, k〉 |undirected graph G has a k-partition}.

A k-partition of G = (V,E) is a partition of V into k disjoint subsets V1, . . . , Vk such
that there are no edges among nodes from two different subsets. Formally: For all edges
{u, v} ∈ E it holds that u and v are in different subsets, i.e., u ∈ Vi, v ∈ Vj with i 6= j.

A decider for COLORING can be used to show the decidability of MULTIPARTITION.

Explain how to use your algorithm for COLORING to decide MULTIPARTITION. (4 Points)

Remark: If you did not succeed in giving an algorithm that decides COLORING in (a), you
may assume that you have such an algorithm.
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Task 7: Complexity Theory (16 Points)

(a) Give a language which is in NP but not in P . Assume that P 6= NP! (2 Points)

(b) Give a language which is neither in P nor in NP . (2 Points)

(c) Given a set U of n elements (’universe’) and a collection S ⊆ 2U of m subsets of U , a
selection C1, . . . , Ck ∈ S of k sets is called a set cover of size k if C1 ∪ . . . ∪ Ck = U . The
SETCOVER-problem is defined as

SETCOVER :={〈U, S, k〉 |U is a set, S ⊆ 2U and there is a set cover for (U, S) of size k}.

Assume that we already know that the problem VERTEXCOVER is NP-complete

VERTEXCOVER := {〈G, k〉 | undirected graph G has a vertex cover of size at most k}.

Given a graph G = (V,E), a vertex cover is a subset V ′ ⊆ V of nodes of G such that every
edge of G is adjacent to a node in the subset V ′.

Show that SETCOVER is NP-complete. (12 Points)

Hint: For the polynomial reduction, let the edges E of a given instance of the VERTEX-
COVER problem be the universe U for the associated instance of the SETCOVER problem.
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Task 8: Logic (16 Points)

(a) Consider the following propositional formula

ψ := (x ∧ y → z ∨ w) ∧ (y → x) ∧ (z ∧ y → 0) ∧ (w ∧ y → 0) ∧ y.

(i) Transfer ψ into an equivalent formula in conjunctive normal form (CNF). (3 Points)

(ii) Use the resolution calculus to show that ψ is unsatisfiable. (5 Points)

(b) Consider the following first order logical formulae

ϕ1 := ∀xR(x, x)

ϕ2 := ∀x∀y R(x, y)→ (∃zR(x, z) ∧R(z, y))

ϕ3 := ∃x∃y (¬R(x, y) ∧ ¬R(y, x))

where x, y are variable symbols and R is a binary predicate. Give an interpretation

(i) I1 which is a model of ϕ1 ∧ ϕ2. (3 Points)

(ii) I2 which is no model of ϕ1 ∧ ϕ2 ∧ ϕ3. (2 Points)

(iii) I3 which is a model of ϕ1 ∧ ϕ2 ∧ ϕ3. (3 Points)

Remark: No proof required.
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