
Theoretical Computer
Science (Bridging Course)

Gian Diego Tipaldi

Context Free Languages

Topics Covered

 Context free grammars

 Pushdown automata

 Equivalence of PDAs and CFGs

 Non-context free grammars

 The pumping lemma

Context Free Grammars

 Extend regular expressions

 First studied for natural languages

 Often used in computer languages

 Compilers

 Parsers

 Pushdown automata

Context Free Grammars

 Collection of substitution rules

 Rules: Symbol -> string

 Variable symbols (Uppercase)

 Terminal symbols (lowercase)

 Start variable

Context Free Grammars

 Example grammar G1:

 A, B are variables

 0,1,# are terminals

 A is the start variable

Context Free Grammars

Example string: 000#111

Does it belong to the
grammar?

Context Free Grammars

Example string: 000#111

 A -> 0A1

 0A1 ->00A11

 00A11 -> 000A111

 000A111 -> 000B111

 000B111 -> 000#111

Context Free Grammars

Example string: 000#111

 A -> 0A1

 0A1 ->00A11

 00A11 -> 000A111

 000A111 -> 000B111

 000B111 -> 000#111

A
A
A
A
B

0 0 0 # 1 1 1

Parse tree for
000#111 in 𝐺1

Context Free Grammars

Example string: 000#111

 A -> 0A1

 0A1 ->00A11

 00A11 -> 000A111

 000A111 -> 000B111

 000B111 -> 000#111

A
A
A
A
B

0 0 0 # 1 1 1

Parse tree for
000#111 in 𝐺1

Natural Language Example

 A boy sees

 The boy sees the flower

 A girl with the flower likes the boy

<SENTENCE> → <NOUN-PHRASE><VERB-PHRASE>

<NOUN-PHRASE> → <CMPLX-NOUN>|<CMPLX-NOUN><PREP-PHRASE>

<VERB-PHRASE> → <CMPLX-VERB>|<CMPLX-VERB><PREP-PHRASE>

<PREP-PHRASE> → <PREP><CMPLX-NOUN>

<CMPLX-NOUN> → <ARTICLE><NOUN>

<CMPLX-VERB> → <VERB>|<VERB><NOUN-PHRASE>

<ARTICLE> → a | the

<NOUN> → boy | girl | flower

<VERB> → touches | likes | sees

<PREP> → with

Context Free Grammar

Definition 2.2:

A context-free grammar is a 4-tuple
 (𝑉,Σ,𝑅,𝑆)

where:

 𝑉 is the set of variables

 Σ is the set of terminals, Σ ∩ 𝑉 = ∅

 𝑅 is the set of rules

 𝑆∈𝑉 is the start symbol

Language of a grammar

 u,v,w are strings, A->w a rule

 uAv yields uwv: uAv

 uwv

 u derives v: u
∗
 v if

 Language of a grammar

Parsing a string

 Consider the following grammar

 What are the parse trees of

 a + a x a

 (a + a) x a

3
(, , , }

{ , , }

{ , , , (,)}

is

|

|

() |

G V R E x p r

V E x p r T e rm F a c to r

a

R

E x p r E x p r T e rm T e rm

T e rm T e rm F a c to r F a c to r

F a c to r E x p r a

   

      

   

        

        

   

Parsing a string

Designing Grammars

Harder than designing automata

Few techniques can be used

 Union of context free languages

 Conversion from DFA (regular)

 Exploit linked variables (0n1n)

 Exploit recursive structure (trickier)

Union of Different CFGs

1 1

2 2

1 2

0 1 |

1 0 |

|

S S

S S

S S S











1

2

1 2

() {0 1 | 0}

() {1 0 | 0}

() () ()

n n

n n

L G n

L G n

L G L G L G

 

 

 

Conversion from DFAs

 Take the same vocabulary: Σ𝑔 = Σ𝑎

 For each state qi insert a variable Ri

 For each transition 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 insert

𝑅𝑖 → 𝑎𝑅𝑗

 For each accept state 𝑞𝑘 insert

𝑅𝑘 → 𝜖

Conversion from DFAs

 Take the same vocabulary: Σ = {0,1}

 Insert all the variables: V = {𝑅1, 𝑅2}
 Insert the rules:

q2 q1

0 1 1

0

Designing Linked Strings

 Languages of the type

 Create rules of the form

 For the language above

Designing Recursive Strings

 Example are arithmetic expressions

 Create the recursive structure <Expr>

 Place it where it appear <Factor>

Ambiguity

 Generate a string in several ways

 E.g., grammar G5:

 No usual notion of precedence

 Natural language processing

 “a boy touches a girl with the flower”

Ambiguity

 Consider the string: a + a x a

Ambiguity – Definition

 Leftmost derivation: At every step,
replace the leftmost variable

 A string is generated ambiguously if it
has multiple leftmost derivations

 A CFG is ambiguous if generates some
string ambiguously

 Some context free languages are
inherently ambiguous

Chomsky Normal Form (CNF)

Definition 2.8:
A context-free grammar is in Chomsky
normal form if every rule is of the form

𝐴 → 𝐵𝐶
𝐴 → 𝑎

where 𝑎 is any terminal and 𝐴,𝐵, and 𝐶
are any variables—except that 𝐵 and 𝐶

may not be the start variable.
In addition we permit the rule 𝑆→𝜀,
where 𝑆 is the start variable.

Chomsky Normal Form (CNF)

Theorem 2.9:

Any context-free language is generated
by a context-free grammar in Chomsky
normal form.

Proof Idea

 Rewrite the rules not in CNF

 Introduce new variables

 Four cases:

 Start variable on the right side

 Epsilon rules: 𝐴 → ε

 Unit rules: 𝐴 → 𝐵

 Long and/or mixed rules: 𝐴 → 𝑎𝐴𝑏𝑏𝐵𝑎𝐵

Proof Idea

 Start variable on the right side

 Introduce a new start and 𝑆1 → 𝑆0

 Epsilon rules: 𝐴 → ε

 Introduce new rules without A

 Unit rules: 𝐴 → 𝐵

 Replace B with its production

 Long and/or mixed rules: 𝐴 → 𝑎𝐴𝑏𝑏𝐵𝑎𝐵

 New variables and new rules

Formal Proof: by Construction

1. Add a new start symbol 𝑆_0 and the
rule 𝑆0 → 𝑆, where 𝑆 is the old start

2. Remove all rules 𝐴 → 𝜖 :

 For each 𝑅 → 𝑢𝐴𝑣 add 𝑅 → 𝑢𝑣

 For each 𝑅 → 𝐴 add 𝑅 → 𝜖

 Repeat until all gone (keep 𝑆0 → 𝜖)

3. Remove all rules 𝐴 → 𝐵 :

 For each 𝐵 → 𝑢 add 𝐴 → 𝑢

 Repeat until all gone

Formal Proof: by Construction

4. Convert all rules 𝐴 → 𝑢1…𝑢𝑘 , 𝑘 ≥ 3 in:

 𝐴 → 𝑢1𝐴1

 𝐴1 → 𝑢2𝐴2, …

 𝐴𝑘−2 → 𝑢𝑘−1𝑢𝑘

5. Convert all rules 𝐴 → 𝑢1𝑢2:

 Replace any terminal 𝑢𝑖 with 𝑈𝑖

 Add the rules 𝑈𝑖 → 𝑢𝑖

 Be careful of cycles!

CNF: Example 2.10 from Book

 Convert the CFG in CNF

 Added rules in bold

 Removed rules in stroke

𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏 | 𝜀

CNF: Example 2.10 from Book

 Add the new start symbol

𝑺𝟎 → 𝑺
𝑆 → 𝐴𝑆𝐴 | 𝑎𝐵
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏 | 𝜀

CNF: Example 2.10 from Book

 Remove the empty rule 𝐵 → 𝜀

𝑆0 → 𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝒂
𝐴 → 𝐵 𝑆 𝜺
𝐵 → 𝑏 | 𝜀

CNF: Example 2.10 from Book

 Remove the empty rule 𝐴 → 𝜀

𝑆0 → 𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑺𝑨 𝑨𝑺 | 𝑺
𝐴 → 𝐵 𝑆 𝜀
𝐵 → 𝑏

CNF: Example 2.10 from Book

 Remove unit rule: 𝑆 → 𝑆

𝑆0 → 𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆 | 𝑆
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏

CNF: Example 2.10 from Book

 Remove unit rule: 𝑆0 → 𝑆

𝑆0 → 𝑆 | 𝑨𝑺𝑨 𝒂𝑩 𝒂 𝑺𝑨 𝑨𝑺
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝐵 | 𝑆
𝐵 → 𝑏

CNF: Example 2.10 from Book

 Remove unit rule: 𝐴 → 𝐵

𝑆0 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝐵 𝑆 𝒃
𝐵 → 𝑏

CNF: Example 2.10 from Book

 Remove unit rule: 𝐴 → 𝑆

𝑆0 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝑆 → 𝐴𝑆𝐴 𝑎𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝑆 𝑏 𝑨𝑺𝑨 𝒂𝑩 𝒂 𝑺𝑨 𝑨𝑺
𝐵 → 𝑏

CNF: Example 2.10 from Book

 Convert the remaining rules

𝑆0 → 𝐴𝑨𝟏 𝑼𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝑆 → 𝐴𝑨𝟏 𝑼𝐵 𝑎 𝑆𝐴 𝐴𝑆
𝐴 → 𝑏 𝐴𝑨𝟏 𝑼𝐵 𝑎 𝑆𝐴 | 𝐴𝑆
𝑨𝟏 → 𝑺𝑨
𝑼 → 𝒂
𝐵 → 𝑏

Pushdown Automata (PDA)

 Extend NFAs with a stack

 The stack provides additional memory

 Equivalent to context free grammars

 They recognize context free languages

Finite State Automata

 Can be simplified as follow

 State control for states and transitions

 Tape to store the input string

state
control

a a b b

input

Pushdown Automata

 Introduce a stack component

 Symbols can be read and written there

state
control

a a b b

input
a

a

b

stack

What is a Stack?

 Stacks are special containers

 Symbols are “pushed” on top

 Symbols can be “popped” from top

 Last in first out principle

 Similar to plates in cafeteria

Formal Definition of PDA

A pushdown automata is a 6-tuple
 (𝑄, Σ, Γ, 𝛿, 𝑞𝑜, 𝐹)

 𝑄 is a finite set of states

 Σ is a finite set, the input alphabet

 Γ is a finite set, the stack alphabet

 𝛿: 𝑄 × Σ𝜖 × Γ𝜖 → 𝑃(𝑄 × Γ𝜖) is the
transition function

 𝑞0 ∈ 𝑄 is the initial state

 𝐹 ⊆ 𝑄 is the set of accept states

Transition Function

 Maps (state, in, stk) in (state, stk)

 Can include empty symbols

 $ is used to indicate the stack end

Input 0 1 є

Stack 0 $ є 0 $ є 0 $ є

q1 {(q2,$)}

q2 {(q2,0)} {(q3,є)}

q3 {(q3,є)} {(q4,є)}

q4

Example PDA

 PDA for the language

q2 q1

q4 q3

є,є → $
0,є → 0

1,0 → є

1,0 → є є,$ → є

Computation of the PDA

Compute keeping track of

 String

 State

 Stack

Computation of the PDA

Compute keeping track of

 String

 State

 Stack

q2 q1

q4 q3

є,є → $
0,є → 0

1,0 → є

1,0 → є є,$ → є

Computation of the PDA

Compute keeping track of

 String

 State

 Stack

q2 q1

q4 q3

є,є → $
0,є → 0

1,0 → є

1,0 → є є,$ → є

1

2

2

2

3

3

4

(0 0 1 1, ,)

(0 0 1 1, , $)

(0 1 1, , 0 $)

(1 1, , 0 0 $)

(1, , 0 $)

(, , $)

(,) a c c e p t

q

q

q

q

q

q

q



















Definition of Computation

 0

*

1

0 0

1

L e t b e a p u s h d o w n a u to m a to n (, , , , ,)

L e t b e a s t r in g o v e r

 i f a n d w h e re a n d a s e q u e n c e o f

s ta te s , . . . , e x is t s t r in g s , . . . ,

a c c e p ts

e x is tss in a n d in

n

n i

n n

M Q q F

w w w

M w w

s s

w w w w

r r Q



 

 

    



0 0

1 1

*

*

0

1

1 .

2 .fo r a ll 0 , . . . , 1

 (,) (, ,) w h e re = a n d =

 fo r s o m e , a n d s o m e

3 .

N o e x p lic i t te s t fo r e m p ty s ta c k a n d e n d o

s u c h th a t

a n d

f in p u t

i i i i i

n

r q

i n

r r w s a t s b

s

b

a

a t

b t

r F







  



 

   







Another Example of PDA

𝐿 = 𝑎𝑖 𝑏𝑗 𝑐𝑘

𝑖, 𝑗, 𝑘 0 𝑎𝑛𝑑 𝑖 = 𝑗 𝑜𝑟 𝑖 = 𝑘}

q4 q3

q5 q6

𝜀,$ → 𝜀

q7 q2

q1

b, 𝜀 → 𝜀 a, 𝜀 → a c,a → 𝜀

b,a → 𝜀 c, 𝜀 → 𝜀

𝜀,$ → 𝜀 𝜀, 𝜀 → 𝜀 𝜀, 𝜀 → 𝜀

Another Example of PDA

𝐿 = 𝑤𝑤𝑅 𝑤 ∈ 0,1 ∗}

𝑤𝑅 is 𝑤 written “backwards”

q2 q1

q4 q3

𝜀, 𝜀 → $ 0, 𝜀 → 0
1, 𝜀 → 1

𝜀, 𝜀 → 𝜀

0,0 → 𝜀
1,1 → 𝜀

𝜀,$ → 𝜀

Equivalence of PDAs and CFLs

Theorem 2.20:
A language is context free if and only if
some pushdown automaton recognizes
it.

Lemma 2.21:
If a language is context free, then some
pushdown automaton recognizes it.
(Forward direction of proof)

Lemma 2.21: Proof Idea

 Construct a PDA P for the grammar

 P accepts w if there is a derivation

 Non determinism for multiple rules

 Represent intermediate strings on PDA

 Store the variables on the stack

Lemma 2.21: Proof Idea

 Representing 01A1A0

state
control

0 1 1 0

A

1

A 0 1
0

$

0 1 A 1 A 0 0 1 A 1 A 0

Proof by Construction

1. Place the marker symbol $ and the

start variable on the stack.

2. Repeat the following steps forever.

There are three possible cases:

a. The top of stack is a variable symbol A;

b. The top of stack is a terminal symbol a;

c. The top of stack is the symbol $

Proof by Construction

The top of stack is a variable symbol A

Non-deterministically select one of the
rules for A and substitute A on the stack.

The top of stack is a terminal symbol a

Read the next symbol from the input and
compare it to a. If they match, repeat. If they
do not match, reject the branch.

Proof by Construction

The top of stack is the symbol $

Enter the accept state. Doing so accepts the
input if it has all been read.

Proof by Construction

 PDA to substitute a whole string

Proof by Construction

 Final PDA to accept the string

Example 2.25 From the Book

 Construct a PDA to accept the CFG
𝑆 → 𝑎𝑇𝑏 | 𝑏
𝑇 → 𝑇𝑎 | 𝜀

Example 2.25 From the Book

 Construct a PDA to accept the CFG
𝑆 → 𝑎𝑇𝑏 | 𝑏
𝑇 → 𝑇𝑎 | 𝜀

Equivalence of PDAs and CFLs

Lemma 2.27:
If a pushdown automaton recognizes
some languages, then it is context free.
(Backward direction of proof)

Assumptions:

1. The PDA has a single accept state

2. The PDA empties the stack before accepting

3. Transitions either push or remove symbols

Lemma 2.27: Assumptions

 Assumption 1

 Create a new accept state with empty
transitions from the previous ones

 Assumption 2

 Creates dummy transitions to empty the
stack before accepting

Lemma 2.27: Assumptions

 Assumption 3

 Replace each transitions that pushes and
pops with two transitions and a new state

 Replace each transitions without push and
pop with two transitions that push and
pop a dummy symbol and a new state

Lemma 2.27: Proof

 S a y th a t a n d c o n s tru c t . T h e v a r ia b le s

o f a re T h e s ta r t v a r ia b le is

N o w w e d e s c r ib e ´s ru le s .

 F o r e a c h a n d , i f

0 a c c e p t

0 a c c e p t

p q q ,q

P (Q , , , q ,{ q }) G

G { A | p ,q Q } . A .

G

p ,q , r , s Q ; t a ,b (p ,a ,)





   



        

 c o n ta in s a n d c o n ta in s p u t th e

 ru le in

 F o r e a c h p u t th e ru le in

 F in a lly , fo r e a c h p u t th e ru le in

Y o u m a y g a in s

p q r s

p q p r rq

p p

(r ,t) (s ,b ,t) (q ,)

A a A b G .

p ,q , r Q A A A G .

p Q A G .

 



  

   

o m e in tu i t io n fo r th is c o n s tru c t io n f ro m th e fo llo w in g f ig u re s .

Inserting 𝑨𝒑𝒒 → 𝒂𝑨𝒓𝒔𝒃

Inserting 𝑨𝒑𝒒 → 𝑨𝒑𝒓𝑨𝒓𝒒

Lemma 2.27: Proof

 We now need to prove that the
construction works

 𝑨𝒑𝒒 generates 𝒙 iff 𝒙 brings 𝑷 from

𝒑 with an empty stack to 𝒒 with an
empty stack

 Prove by induction

Lemma 2.27: Proof (Forward)

If 𝑨𝒑𝒒 generates 𝒙 , it brings 𝑷 from

𝒑 with empty stack to 𝒒 with empty stack

Basis: The derivation has 1 step

There is only one rule possible 𝑨𝒑𝒑 → 𝝐

which trivially brings P from p to p.

Lemma 2.27: Proof (Forward)

Induction:

Assume true for k steps, prove for k+1

Case a): 𝐴𝑝𝑞 𝑎𝐴𝑟𝑠𝑏

𝑥 = 𝑎𝑦𝑏 and 𝐴𝑟𝑠
∗
 𝑦 in 𝑘 steps with empty

stack (induction assumption).

Now, because 𝐴𝑝𝑞 𝑎𝐴𝑟𝑠𝑏 in G, we have

𝛿(𝑝, 𝑎, 𝜀) ∋ (𝑟, 𝑡) and 𝛿 𝑠, 𝑏, 𝑡 ∋ (𝑞, 𝜀)

Therefore, 𝑥 can bring 𝑃 from 𝑝 to 𝑞 with
empty stack.

Lemma 2.27: Proof (Forward)

Induction:

Assume true for k steps, prove for k+1

Case b): 𝐴𝑝𝑞 𝐴𝑝𝑟𝐴𝑟𝑞

𝑥 = 𝑦𝑧 such that 𝐴𝑝𝑟
∗
 𝑦 and 𝐴𝑝𝑟

∗
 𝑧 in at

most 𝑘 steps with empty stack.

Therefore, 𝑥 can bring 𝑃 from 𝑝 to 𝑞 with
empty stack.

Lemma 2.27: Proof (Backward)

If 𝒙 brings 𝑷 from 𝒑 with empty stack to 𝒒
with empty stack, then 𝑨𝒑𝒒 generates 𝒙

Basis: The computation has 0 steps

If it has 0 steps, it starts and ends in the
same state. P can only read the empty
string. The rule 𝑨𝒑𝒑 → 𝝐 generates it.

Lemma 2.27: Proof (Backward)

Induction:

Assume true for k steps, prove for k+1

Case a): Stack is not empty in between

The symbol pushed at the beginning is
the same popped at the end, we have
therefore 𝐴𝑝𝑞 → 𝑎𝐴𝑟𝑠𝑏 in the grammar.

We have 𝑥 = 𝑎𝑦𝑏, from induction we have

𝐴𝑟𝑠
∗

𝑦, therefore 𝐴𝑝𝑞

∗

𝑎𝑦𝑏

Lemma 2.27: Proof (Backward)

Induction:

Assume true for k steps, prove for k+1

Case b): Stack is empty in between

There exists a state 𝑟 in between and
computations from 𝑝 to 𝑟 and 𝑟 to 𝑞 have
at most k steps. We have 𝑥 = 𝑦𝑧, from

induction 𝐴𝑝𝑟
∗

𝑦 and 𝐴𝑟𝑞

∗

𝑧 .

Since 𝐴𝑝𝑞 → 𝐴𝑝𝑟𝐴𝑟𝑞 is in the grammar, we

have that 𝐴𝑝𝑞
∗

𝑦𝑧

Regular vs. Context Free

 Every regular language is context free

 NFAs are PDAs without a stack!

regular
languages

Pumping Lemma

 P u m p in g L e m m a

If is a c o n te x t f re e la n g u a g e , th e n th e r e is a n u m b e r

s u c h th a t i f i s a n y s t r in g in o f le n g th a t le a s t

th e n m a y b e d iv e d in to s u c h th a t

1 . F o r e a c h 0 ;

2 .

i i

A p

s A p

s s u v x y z

i u v x y z A

v



 

T h e o r e m

0

3 .

y

v x y p





Remember the Parse Tree?

Pumping Lemma: Proof Idea

 Let T be the parse tree for A

 Show that s can be broken into uvxyz

 Prove the conditions holds

T

T

Pumping Lemma: Proof Idea

 Let T be the parse tree for A

 Show that s can be broken into uvxyz

 Prove the conditions holds

T

T

R

u z

Pumping Lemma: Proof Idea

 Let T be the parse tree for A

 Show that s can be broken into uvxyz

 Prove the conditions holds

T

T

R

R

x u v y z

Pumping Lemma: Proof Idea

 Let T be the parse tree for A

 Show that s can be broken into uvxyz

 Prove the conditions holds

T

v y

T

R

R

R

x

u v y z

Pumping Lemma: Proof Idea

 Let T be the parse tree for A

 Show that s can be broken into uvxyz

 Prove the conditions holds

T

T

R

R

x u v y z

Pumping Lemma: Proof Idea

 Let T be the parse tree for A

 Show that s can be broken into uvxyz

 Prove the conditions holds

T

T

R

x u z

Pumping Lemma: Proof

 Let 𝑏 be the maximum number of
symbols on right hand side of a rule

 The number of leaves in a parse tree
of height ℎ is at most 𝑏ℎ

 Hence, for any string 𝑠 of such parse

tree, its length |s| ≤ 𝑏ℎ

 Let 𝑉 be the number of variables and

choose the pumping length 𝑝 = 𝑏 𝑉 +2

Pumping Lemma: Proof

 For any 𝑠 ≥ 𝑝: possible parse trees
for 𝑠 have height at least 𝑉 + 1

 let 𝜏 be the minimum parse tree for 𝑠

 It must contain a path P from root to a
leaf of length at least 𝑉 + 1

 P has at least 𝑉 + 2 nodes: one terminal
and the rest variables

 P has at least 𝑉 + 1 variables  some

variable must be doubled!

Pumping Lemma: Proof Cnd. 1

 Divide 𝑠 into 𝑢𝑣𝑥𝑦𝑧 as in picture.

 R generates 𝑣𝑥𝑦, with a large subtree,
or just 𝑥, with a smaller subtree.

 Pumping down gives 𝑢𝑥𝑧; pumping up

gives 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 with 𝑖 ≥ 1

T

R

R

x u v y z

Pumping Lemma: Proof Cnd. 2

 Condition states 𝑣𝑦 > 0.

 We must be sure 𝑣 and 𝑦 are not 𝜀.

 Assuming they were 𝜀, substituting
smaller for bigger subtree would lead
to parse tree with fewer nodes.

 Contradiction: 𝜏 chosen to be parse
tree with fewest number of nodes

Pumping Lemma: Proof Cnd. 3

 Condition states 𝑣𝑥𝑦 ≤ 𝑝

 Upper occurrence of R generates 𝑣𝑥𝑦

 R chosen such that both occurrences
fall within the bottom 𝑉 + 1 variables
on the path and longest path

 Subtree where R generates 𝑣𝑥𝑦 is at
most 𝑉 + 2 high.

 A tree of height 𝑉 + 2 can generate

strings of length at most 𝑏 𝑉 +2 = 𝑝

Non Context Free Languages

𝐵 = 𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0

 Choose 𝑎𝑝𝑏𝑝𝑐𝑝

 Find 𝑢𝑣𝑥𝑦𝑧 , either v or y not empty (2)

 Two cases:

 Contain only one type of symbol:
Impossible to respect the equal number

 Contain mixed symbols:
Impossible to keep the order of symbols

Non Context Free Languages

𝐶 = 𝑎𝑖𝑏𝑗𝑐𝑘 | 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘

 Choose 𝑎𝑝𝑏𝑝𝑐𝑝

 Find 𝑢𝑣𝑥𝑦𝑧 , either v or y not empty (2)

 Two cases as before:

 Contain only one type of symbol
More complex to prove (next slide)

 Contain mixed symbols
Impossible to keep the order of symbols

Non Context Free Languages

𝐶 = 𝑎𝑖𝑏𝑗𝑐𝑘 | 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘

 Contain only one type of symbol

 a does not appear:
we have that 𝑢𝑣0𝑥𝑦0𝑧 ∉ 𝐶 (less b and c)

 b does not appear:
if a appears, 𝑢𝑣2𝑥𝑦2𝑧 ∉ 𝐶 (more a than b)
if c appears, 𝑢𝑣0𝑥𝑦0𝑧 ∉ 𝐶 (more c than b)

 c does not appear:
we have that 𝑢𝑣2𝑥𝑦2𝑧 ∉ 𝐶 (more a and b)

Example Exam Question

Summary

 Context free grammars

 Pushdown Automata

 Equivalence of PDAs and CFGs

 Non-context free grammars

 Pumping lemma

