Theoretical Computer
Science (Bridging Course)

Context Free Languages

UNI
I

FREIBURG

Gian Diego Tipaldi

Topics Covered

= Context free grammars

= Pushdown automata

= Equivalence of PDAs and CFGs
= Non-context free grammars

= The pumping lemma

Context Free Grammars

= Extend regular expressions
= First studied for natural languages

= Often used in computer languages
= Compilers
= Parsers

= Pushdown automata

Context Free Grammars

= Collection of substitution rules

= Rules: Symbol -> string

= Variable symbols (Uppercase)
= Terminal symbols (lowercase)

= Start variable

Context Free Grammars

= Example grammar G1.:

A —= 0A1
A— B
B — #

= A, B are variables
= 0,1,# are terminals
= A is the start variable

Context Free Grammars

Example string: 000#111

Does it belong to the
grammar?

Context Free Grammars

Example string: 000#111

= A -> 0A1l

= 0Al1 ->00A11

= 00A11 -> 000A111

= 000A111 -> 000B111
= 000B111 -> 000#111

Context Free Grammars

Example string: 000#111

= A -> 0A1l
= 0Al1 ->00A11
= 00A11 -> 000A111 / \

= 000A111 -> 000B111 000 #

Parse tree for

= 000B111 -> 000#111 000#111 in G,

Context Free Grammars

Example string: 000#111

= A -> 0A1l
= 0Al1 ->00A11
= 00A11 -> 000A111 / \

= 000A111 -> 000B111 000 #

Parse tree for

= 000B111 -> 000#111 000#111 in G,
L(Gy) = {0"#1" | n > 0}

Natural Language Example

{SENTENCE> — <NOUN-PHRASE>XVERB-PHRASE>
<{NOUN-PHRASE> — <CMPLX-NOUN>|KCMPLX-NOUN><PREP-PHRASE>
<VERB-PHRASE> — <CMPLX-VERB>|KCMPLX-VERB><PREP-PHRASE>
{PREP-PHRASE> — <PREP>XCMPLX-NOUN>

<CMPLX-NOUN> — <ARTICLE>XNOUN>»
{CMPLX-VERB> — <VERB>|KVERB><{NOUN-PHRASE>
ARTICLE> — a|the
<{NOUN> — Dboy | girl | flower
<VERB> — touches |likes | sees
<PREP> — with

= A boy sees
= The boy sees the flower
= A girl with the flower likes the boy

Context Free Grammar

Definition 2.2:

A context-free grammar is a 4-tuple
(V,Z,R,S)

where:

= |/ is the set of variables

= ¥ is the set of terminals, XNV =¢
= R is the set of rules

= SeV is the start symbol

Language of a grammar

= u,v,w are strings, A->w a rule
= yAv vields uwv: UAv = uwyv

= U derivesv: u= v if

U= U = Uy =+ = U = U

= |l anguage of a grammar

fweX | S=w

Parsing a string

= Consider the following grammar

G,=(V,Z,R,< Expr >}

V ={< Expr >,<Term >,< Factor >}

> ={a,+,x,(,)}

R is

< Expr>—>< Expr>+<Term >|<Term >
<Term >><Term > x < Factor >|< Factor >

< Factor >—> (< Expr >)|a

= What are the parse trees of
"a -+ aXxa
»(a+a)xa

Parsing a string

Desighning Grammars

Harder than desighing automata

Few techniques can be used

= Union of context free languages

= Conversion from DFA (regular)

= Exploit linked variables (0"1")

= Exploit recursive structure (trickier)

Union of Different CFGs

S, > 0S,1le L(G,)={0"1"|n >0}
S, >15,0l¢e L(G,)={1"0"|n > 0}
S > S,|S, L(G)=L(G,)uU L(G,)

Conversion from DFAs

= Take the same vocabulary: X, =%,

= For each state q; insert a variable R,

= For each transition 6(q;,a) = q; insert
R; = aR;

= For each accept state g, insert

Rk—>6

Conversion from DFAs

» ‘

= Take the same vocabulary: Y ={0,1}
= Insert all the variables: V = {R{,R,}
= [Insert the rules:

R — O0R;, R — 1R

Ry — 0Ry, Ry — 1R;

Ry — €

Designing Linked Strings

= Languages of the type
L(G)={0"1"|n=0}

= Create rules of the form

R — uRv

= For the language above

S — 051 | e

Designing Recursive Strings

= Example are arithmetic expressions

< Expr >—< Expr >+ <Term ><Term >
< Term >—<Term >x < Factor >|< Factor >
< Factor >— (< Expr >) | a

= Create the recursive structure <Expr>
= Place it where it appear <Factor>

Ambiguity

= Generate a string in several ways
= £E.g., grammar Gb5:

< Expr >—>< Expr > + < Expr >|< Expr > x < Expr > (< Expr >) | a

= No usual notion of precedence

= Natural language processing
= “a boy touches a girl with the flower”

Ambiguity

= Consider the string: a + a X a

(EXPR) (EXPR}

\ /) N\

(EXPR) (EXPR) (EXPR) (EXPR)

e\ e
(EXPR} | (EXPR) (EXPR) | (EXPR)
(\ / \

a + a X a a + d X a

Ambiguity — Definition
= | eftmost derivation: At every step,

replace the leftmost variable

= A string is generated ambiguously if it
has multiple leftmost derivations

= A CFG is ambiguous if generates some
string ambiguously

= Some context free languages are
inherently ambiguous

{012 |i=jorj=k)}

Chomsky Normal Form (CNF)

Definition 2.8:
A context-free grammar is in Chomsky
normal form if every rule is of the form
A - BC
A—-a

where a is any terminal and A4,B, and C
are any variables—except that B and C
may not be the start variable.

In addition we permit the rule S—e¢,
where S is the start variable.

Chomsky Normal Form (CNF)

Theorem 2.9:

Any context-free language is generated
by a context-free grammar in Chomsky
normal form.

Proof Idea

= Rewrite the rules not in CNF
» Introduce new variables

= Four cases:
= Start variable on the right side
= Epsilon rules: A - ¢
= Unit rules: A > B
= Long and/or mixed rules: A - aAbbBaB

Proof Idea

= Start variable on the right side
= Introduce a new start and S; - S,
= Epsilon rules: A —» ¢
= I[ntroduce new rules without A
= Unit rules: A > B
= Replace B with its production
= Long and/or mixed rules: A - aAbbBaB
= New variables and new rules

Formal Proof: by Construction

1. Add a new start symbol S_0 and the
rule S, - S, where S is the old start
2. Remove all rules A - €
= For each R » udvadd R -» uv
= Foreach R—>4add R —» ¢
= Repeat until all gone (keep S, —» ¢)
3. Remove all rules A - B :
= Foreach B>uadd A-u
= Repeat until all gone

Formal Proof: by Construction

4. Convert all rules A - uy ...uy, k = 3 in:
" A-udy
" A > uy,A,, ..
" Ap_y D Up_qUg

5. Convert all rules 4 - u u,:
= Replace any terminal u; with U;
= Add the rules U; - u;

= Be careful of cycles!

CNF: Example 2.10 from Book
= Convert the CFG in CNF

S - ASA | aB
A-B|S
B-bl|e¢

» Added rules in bold
= Removed rules in stroke

CNF: Example 2.10 from Book
= Add the new start symbol

S0

S - ASA | aB
A-B|S
B-bl|e¢

CNF: Example 2.10 from Book

= Remove the empty rule B - ¢

So— S
S—> ASA|aB | a
A->B|S|¢

B-b]|e

CNF: Example 2.10 from Book

= Remove the empty rule 4 - ¢

So— S
S—>ASA|aB|a|SA|AS|S
A->B|S|«

B—-b

CNF: Example 2.10 from Book

= Remove unitrule: §$ - S

So— S
S—>ASA|aB|a|SA|AS|S
A-B|S

B—-b

CNF: Example 2.10 from Book

= Remove unit rule: S, —» S

So > S|ASA|aB|a|SA| AS
S—>ASA|aB|la|SA|AS
A-B|S

B—-b

CNF: Example 2.10 from Book

= Remove unit rule: A - B

So > ASA|aB |a|SA|AS
S—>ASA|aB|a|SA|AS
A->B|S|b

B —-b

CNF: Example 2.10 from Book

= Remove unitrule: A - S

So > ASA|aB |a|SA|AS
S—>ASA|aB|la|SA|AS
A->S|b|ASA|aB|a|SA| AS
B-b

CNF: Example 2.10 from Book

= Convert the remaining rules

So > AA{|UB |la | SA | AS
S—>AA{|UB|a|SA|AS
A—->b|AA{|UB|a|SA|AS
Ay - SA

U-a

B-b

Pushdown Automata (PDA)

= Extend NFAs with a stack
= The stack provides additional memory
= Equivalent to context free grammars

= They recognize context free languages

Finite State Automata

= Can be simplified as follow

state
control

alal|b|b
iInput

» State control for states and transitions
= Tape to store the input string

Pushdown Automata

= Introduce a stack component

state
control —

Input
stack P

O |l | |«

= Symbols can be read and written there

What is a Stack?

= Stacks are special containers
= Symbols are “pushed” on top
= Symbols can be “popped” from top

= |Last in first out principle

= Similar to plates in cafeteria

Formal Definition of PDA

A pushdown automata is a 6-tuple
(Q,%,T,98,q,,F)

= 0 is a finite set of states

= ¥ is a finite set, the input alphabet

= [' is a finite set, the stack alphabet

= 5:QxX. XTI, - P(QxT,)is the
transition function

" gy € Q is the initial state
= F € Q is the set of accept states

Transition Function

= Maps (state, in, stk) in (state, stk)
= Can include empty symbols
= $ is used to indicate the stack end

1(d2$)}

q2 {(qZIO)} {(q3l€)}
A3 1(a3€)} 1(94,€))
A4

Example PDA

= PDA for the language
L(G)={0"1" | n >0}

0,e -0
€€—9%
— (o))
1,0 - €

4€’$ —© @3 1,0 > €

Computation of the PDA

Compute keeping track of
= String
= State
= Stack

Computation of the PDA

Compute keeping track of
= String
= State
= Stack

0,e -0

_,ee—»g'

1,0 > €

<€'$ — 6@3 1,0 —> €

Computation of the PDA

Compute keeping track of 00110.0)
u Strlng .
(0011,q,,9%)
= State ¢
= Stack (011,q,,0%)
d
O,€ N 0 (11,q,,008)
- €,E — 'p l
(@)= %a) O
1,0 — € \’
(¢,0,,9%)

<€’$ — 6/" 1,0 > € ’
\q;'/\) ' (g,,&)accept

Definition of Computation

LetM be apushdown automaton (Q,X,I',6,q,,F)

Letw = w_ ...w_be astring over X

M acceptswifweX andw=w,_...w wherew X andasequence of

states r,...,r exists in Q and strings s ,...,s_exists in I such that
lr,=9q,and s, =¢

2 foralli=0,...,n -1

(r...,b)edo(r,w _,,a) wheres =atands, =bt
for some a,b e I and somete I

3.rne F

No explicit test for empty stack and end of input

Another Example of PDA
L={a b cki,j,k>0andi = jori = k}

b,a — ¢ C, & — &

8
(@) e

&\ /
\>8‘ €, €€ e,g—>gmg,$—>g

a, s—a b, ¢ > ¢ c,a—c¢

Another Example of PDA

L = {ww®|w € {0,1}"}
wk is w written “backwards”

Equivalence of PDAs and CFLs

Theorem 2.20:

A language is context free if and only if

some pushdown automaton recognizes
it.

Lemma 2.21:

If a language is context free, then some
pushdown automaton recognizes it.
(Forward direction of proof)

Lemma 2.21: Proof Idea

= Construct a PDA P for the grammar

= P accepts w if there is a derivation

= Non determinism for multiple rules

= Represent intermediate strings on PDA

= Store the variables on the stack

Lemma 2.21: Proof Idea
= Representing 01A1A0

state
control \

0/1]1]0]0]1

H

A O | D

Proof by Construction

1. Place the marker symbol $ and the

start variable on the stack.

2. Repeat the following steps forever.
There are three possible cases:
a. The top of stack is a variable symbol A;
b. The top of stack is a terminal symbol a;

c. The top of stack is the symbol $

Proof by Construction

The top of stack is a variable symbol A

Non-deterministically select one of the
rules for A and substitute A on the stack.

The top of stack is a terminal symbol a

Read the next symbol from the input and
compare it to a. If they match, repeat. If they
do not match, reject the branch.

Proof by Construction

The top of stack is the symbol $

Enter the accept state. Doing so accepts the
input if it has all been read.

Proof by Construction

= PDA to substitute a whole string

Proof by Construction

= Final PDA to accept the string

e, A—=w forrule A—sw

a,a—e for terminal a

Example 2.25 From the Book

= Construct a PDA to accept the CFG
S—>aTb|b
T —>Ta]le

Example 2.25 From the Book

= Construct a PDA to accept the CFG
S—>aTb|b
T —>Ta]le

Equivalence of PDAs and CFLs

Lemma 2.27:
If a pushdown automaton recognizes
some languages, then it is context free.

(Backward direction of proof)

Assumptions:

1. The PDA has a single accept state

2. The PDA empties the stack before accepting
3. Transitions either push or remove symbols

Lemma 2.27: Assumptions

= Assumption 1

= Create a new accept state with empty
transitions from the previous ones

= Assumption 2

= Creates dummy transitions to empty the
stack before accepting

Lemma 2.27: Assumptions

= Assumption 3

= Replace each transitions that pushes and
pops with two transitions and a new state

= Re
DO
DO

nlace each transitions without push and
D with two transitions that push and

D a dummy symbol and a new state

Lemma 2.27: Proof

Say thatP = (Q,XZ,77,5,q,.{ 0 accept }) and construct G. The variables
of G are { A, | p,g € Q}. The start variable is A

q() q accept

Now we describe G’s rules.

e Foreachp,q,r,seQ;tel',anda,be X ,ifd(p,a,c)

contains (r,t) and &(s,b,t) contains (q,e) put the

rule qu — aArsb in G.

e For each p,q,r e Q putthe rule A, ALAL in G.

e Finally, for each p € Q putthe rule A, > E in G.

You may gain some intuition for this construction from the following figures.

Inserting A,, - aA,:b

T

Stack
height generated
by Apq
Input string D
>

generated
bY Ars

Inserting 4,, - A,, A,

T

St;lck
height — generated
by qu
Input strin
P 6 P q
WW
generated generated

by A,y by Ay,

Lemma 2.27: Proof

= We now need to prove that the
construction works

= A,, generates xiff x brings P from

p with an empty stack to g with an
empty stack

= Prove by induction

Lemma 2.27: Proof (Forward)

If A,, generates x, it brings P from
p with empty stack to g with empty stack

Basis: The derivation has 1 step

There is only one rule possible 4,,, — €
which trivially brings P from p to p.

Lemma 2.27: Proof (Forward)

Induction:
Assume true for k steps, prove for k+1

Case a): Ayq = ad,sb

x = ayb and A, Qy in k steps with empty
stack (induction assumption).
Now, because 4,, = ad,sb in G, we have

d(p,a,e)d (r,t) and 6(s,b, t) 3 (q,¢€)

Therefore, x can bring P from p to g with
empty stack.

Lemma 2.27: Proof (Forward)

Induction:
Assume true for k steps, prove for k+1

Case b): 4,q = A, Arg

x = yz such that 4,, §y and A,, > zin at
most k steps with empty stack.

Therefore, x can bring P from p to g with
empty stack.

Lemma 2.27: Proof (Backward)

If x brings P from p with empty stack to ¢
with empty stack, then A,, generates x

Basis: The computation has 0 steps

If it has O steps, it starts and ends in the
same state. P can only read the empty
string. The rule 4,, - € generates it.

Lemma 2.27: Proof (Backward)

Induction:
Assume true for k steps, prove for k+1
Case a): Stack is not empty in between

The symbol pushed at the beginning is
the same popped at the end, we have
therefore 4,, — aA,sb in the grammar.

We have X = ayb, from induction we have
A > y, therefore A, : ayb

Lemma 2.27: Proof (Backward)

Induction:
Assume true for k steps, prove for k+1
Case b): Stack is empty in between

There exists a state r in between and
computations from p to r and r to g have
at most k steps We have X =yz, from

induction A4,, = y and Arg >z,
Since A,, = ApA,q IS In the grammar, we

have that A4, > yz

Regular vs. Context Free

= Every regular language is context free
= NFAs are PDAs without a stack!

regular
languages

Pumping Lemma

Theorem Pumping Lemma

If A is acontext free language, then there isa number p
such that if s i1s any string in A of length at least p

then s may be dived into s = uvxyz such that

1. For each 1> 0; uvixyizE A

2.vy‘> 0

3. vxy‘g P

Remember the Parse Tree?

Pumping Lemma: Proof Idea

= Let T be the parse tree for A
= Show that s can be broken into uvxyz

= Prove the conditions holds
T

Pumping Lemma: Proof Idea

= Let T be the parse tree for A
= Show that s can be broken into uvxyz

= Prove the conditions holds
T

Pumping Lemma: Proof Idea

= Let T be the parse tree for A
= Show that s can be broken into uvxyz

= Prove the conditions holds
T

Pumping Lemma: Proof Idea

= Let T be the parse tree for A
= Show that s can be broken into uvxyz

= Prove the conditions holds
T

Pumping Lemma: Proof Idea

= Let T be the parse tree for A
= Show that s can be broken into uvxyz

= Prove the conditions holds
T

Pumping Lemma: Proof Idea

= Let T be the parse tree for A
= Show that s can be broken into uvxyz

= Prove the conditions holds
T

Pumping Lemma: Proof

= Let b be the maximum number of
symbols on right hand side of a rule

= The number of leaves in a parse tree
of height h is at most b"

= Hence, for any string s of such parse
tree, its length |s| < b”

= [et |[V]| be the number of variables and
choose the pumping length p = p!VI+2

Pumping Lemma: Proof

= For any |s| = p: possible parse trees
for s have height at least |V|+ 1

= let T be the minimum parse tree for s

= [t must contain a path P from root to a
leaf of length at least |V|+1

= P has at least |[V| + 2 nodes: one terminal
and the rest variables

= P has at least |V| + 1 variables > some
variable must be doubled!

Pumping Lemma: Proof Cnd. 1

= Divide s into uvxyz as in picture.

= R generates vxy, with a large subtree,
or just x, with a smaller subtree.

= Pumping down gives uxz; pumping up
gives uvixy'z with i > 1 T

Pumping Lemma: Proof Cnd. 2

= Condition states |vy| > 0.
= We must be sure v and y are not «.

= Assuming they were ¢, substituting
smaller for bigger subtree would lead
to parse tree with fewer nodes.

= Contradiction: T chosen to be parse
tree with fewest number of nodes

Pumping Lemma: Proof Cnd. 3

= Condition states |vxy| <p
= Upper occurrence of R generates vxy

= R chosen such that both occurrences
fall within the bottom |V| + 1 variables
on the path and longest path

= Subtree where R generates vxy is at
most |V| + 2 high.

= A tree of height |V| + 2 can generate
strings of length at most »"1*2 =p

Non Context Free Languages

B ={a"b"c"™ | n = 0}
= Choose aPbPcP
= Find uvxyz , either v or y not empty (2)

= TWO cases:

= Contain only one type of symbol:
Impossible to respect the equal number

= Contain mixed symbols:
Impossible to keep the order of symbols

Non Context Free Languages

C={a'bick|0<i<j<k}
= Choose aPbPcP
= Find uvxyz , either v or y not empty (2)

= TWO cases as before:

= Contain only one type of symbol
More complex to prove (next slide)

= Contain mixed symbols
Impossible to keep the order of symbols

Non Context Free Languages

C={a'b/c*|0<i<j<k}
= Contain only one type of symbol

= 3 does not appear:
we have that uv°xy°z ¢ C (less b and ¢)

= b does not appear:
if @ appears, uv?xy?z ¢ C (more a than b)
if c appears, uv’xy°z ¢ ¢ (more c than b)

= ¢ does not appear:
we have that uv?xy?z ¢ ¢ (more a and b)

Example Exam Question

Q: Let G = ({5}.{0,1}, R, S) be the CFG with rules:
S—0S0|1S1]0|1 e
Specify a CFG Gy in Chomsky Normal Form such that L(Gy) = L(G).

A: Follow the algorithm:

(a) Introduce an additional start variable and the rule S; — S

(b) Remove the € rules:
S =S |e S 080|151[0[1]00]11
(¢) Remove the unit rules:
S, —080[1S1]0]1]00[11]e S—080[1S1]|0]1]00]11
(d) Remove the long rules:

Sl — U()USU | U1U51 | 0 | 1 ‘ U{)Uo | UlUl | € S — UOUSO | U1U5'1 | 0 | 1 | U()U[} | U1U1
U30—>SUO Ugq — SU;
Up— 0 U — 1

Summary

= Context free grammars
= Pushdown Automata
= Equivalence of PDAs and CFGs

= Non-context free grammars

= Pumping lemma

