Exercise 1: Induction

Find a much more compact formula for the term \(\sum_{k=1}^{n} (2k - 1) \) and prove its correctness by induction.

\(\text{Hint: } \frac{n(n+1)}{2} \text{ would be such a formula for the expression } \sum_{k=1}^{n} k. \)

Sample Solution

We claim that \(\sum_{k=1}^{n} (2k - 1) \) equals \(n^2 \) and show the claim by induction.

\textbf{Induction Start: } For \(n = 1 \) the claim follows as \(\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2. \)

\textbf{Induction Hypothesis/Step: } Now assume the statement is true for some \(n \). It follows that

\[
\begin{align*}
\sum_{k=1}^{n+1} (2k - 1) &= \sum_{k=1}^{n} (2k - 1) + (2(n + 1) - 1) \\
&= n^2 + (2(n + 1) - 1) \\
&= n^2 + 2n + 1 \\
&= (n + 1)^2,
\end{align*}
\]

which shows that the statement also holds for \(n + 1 \). The second equality in the equation above comes from the assumption for \(n \).

Thus the claim follows with the principle of induction.

Exercise 2: Even Number of Odd Degree Nodes

A \textit{simple graph} is a graph without self loops, i.e., every edge of the graph is an edge between two distinct nodes. The degree \(d(v) \) of a node \(v \in V \) of an undirected graph \(G = (V, E) \) is the number of its neighbors, i.e,

\[d(v) = |\{u \in V \mid \{v, u\} \in E\}|. \]

Show that the number of nodes with odd degree in every simple graph is even.

\(\text{Hint: } \text{Consider the sum } D = \sum_{v \in V} d(v) \text{ of all degrees. Is } D \text{ odd or even?} \)
Sample Solution

Let \(G = (V, E) \) be a simple graph. Every edge contributes 2 to \(D \), hence \(D = 2|E| \). Therefore, \(D \) is an even number. Let \(V_e \) (\(V_o \)) be the vertices with even (odd) degree, respectively.

Then we obtain that \(D = \sum_{v \in V} d(v) = \sum_{v \in V_e} d(v) + \sum_{v \in V_o} d(v) \). Now, subtract \(\sum_{v \in V_e} d(v) \) from both sides. We obtain that \(\sum_{v \in V_d} d(v) = D - \sum_{v \in V_o} d(v) \) is even because the right hand side is the subtraction of two even numbers. The left hand side is a sum of odd numbers and to be even there has to be an even number of summands, i.e., \(|V_o| \) is even.

Exercise 3: Playing with Sets

Let \(A \) be a set. Show that the following three statements are equivalent.

(i) \(B \setminus A = B \) for all sets \(B \),

(ii) \((A \cup B) \setminus A = B \) for all sets \(B \),

(iii) \(A = \emptyset \).

Hint: It is sufficient to prove that (i) \(\Rightarrow\) (ii), (ii) \(\Rightarrow\) (iii) and (iii) \(\Rightarrow\) (i).

Sample Solution

(i) \(\Rightarrow\) (ii). Let \(B \) be some set. We show both inclusions \((A \cup B) \setminus A \subseteq B \text{ and } (A \cup B) \setminus A \supseteq B \) separately. \(s' \subseteq' : \) Let \(x \in A \cup B \setminus A \), that is, \(x \in A \cup B \) and \(x \notin A \). Hence \(x \in B \). (we did not use the assumptions in (i) to show this).

\(s' \supseteq' : \) Assume that there is some \(x \in B \) that is not contained in \((A \cup B) \setminus A \). That is \(x \in A \). This is a contradiction to (i) as \(B \setminus A \neq B \).

(ii) \(\Rightarrow\) (iii) Assume that \(A \neq \emptyset \), that is, there is some \(x \in A \). Let \(B = \{x\} \subseteq A \). Then \((A \cup B) \setminus A = (A) \setminus A = \emptyset \neq B \). The claim holds.

(iii) \(\Rightarrow\) (i) Let \(B \) be a set. Then \(B \setminus A \subseteq B \) holds. For the reverse inclusion let \(x \in B \), as \(A = \emptyset \) we have \(x \neq A \) and we obtain \(x \in B \setminus A \).