Exercise 1: Decidability \((5+5 \text{ Points}) \)

(a) Is the following language decidable? Either prove that it is not decidable or provide an algorithm that decides it.

INDEPENDENT SET = \{⟨\(G, k\)⟩ | \(G\) is a graph and contains an independent set of size \(k\)\}.

Remark: An independent set of a graph with size \(s\) is a set \(S \subseteq V\), \(|S| = s\) such that \({v, w}\) \(\notin E\) for all \(u, w \in S\) and \(|S|\) is its size.

(b) Let \(H\) be the language of the halting problem. Give a language \(L\) such that \(L \cap H\) decidable and give a language \(K\) such that \(K \cap H\) is undecidable. Prove your claims.

Sample Solution

(a) We show the result by giving an algorithm. First we check whether the input is an encoding of a tuple \(G, k\). If so, we assume that the graph is stored with an adjacency matrix. Then we simply iterate through all \(k\)-tuples \(v_1, \ldots, v_k\) of nodes in \(V\) and for each of them we test whether none of the edges \({v_i, v_j}\), \(i \neq j\) exist. If this is the case for any of the \(k\) tuples we return true, otherwise false.

(b) \(L = \emptyset\) and \(K = H\).

Exercise 2: \(\mathcal{O}\)-Notation Formal Proofs \((2+2+2 \text{ Points}) \)

The set \(\mathcal{O}(f)\) contains all functions that are asymptotically not growing faster than the function \(f\) (when additive or multiplicative constants are neglected). That is:

\[g \in \mathcal{O}(f) \iff \exists c \geq 0, \exists M \in \mathbb{N}, \forall n \geq M : g(n) \leq c \cdot f(n) \]

For the following pairs of functions, check whether \(f \in \mathcal{O}(g)\) or \(g \in \mathcal{O}(f)\) or both. Proof your claims (you do not have to prove a negative result \(\notin\), though).

(a) \(f(n) = 100n, \ g(n) = 0.1 \cdot n^2\)

(b) \(f(n) = \log_2(n!), \ g(n) = n \log_2 n\) \[\text{[Hint: } n! := \prod_{i=1}^{n} i \geq (n/2)^{n/2}]\]

(c) \(f(n) = 2^n, \ g(n) = 3^n\)

Remark: It is easy to produce tons of exercises of this type. Create a few exercises and try to solve them to practice this for the exam!
Sample Solution

(a) It is $100n \in O(0.1n^2)$. To show that we require constants c, M such that $100n \leq c \cdot 0.1n^2$ for all $n \geq M$. Obviously this is the case for $c = 1000$ and $M = 1$.

(b) We have

$$\log_2(n!) \leq \log_2(n^n) = n \log_2 n$$

for all $n \geq 1$. Therefore $\log_2(n!) \in O(n \log_2 n)$. In the other direction we have the following result

$$\log_2(n!) \geq \log_2((n/2)^{n/2}) = \frac{n}{2} \log_2(n/2) = \frac{n}{2} \log_2 n - \frac{n}{2} \geq \frac{n}{2} \log_2 n - \frac{n}{4} \log_2 n = \frac{1}{4} n \log_2 n$$

For all $n \geq 4$. Thus $n \log_2 n \in O(\log_2(n!))$ is also the case. In general if both $f \in O(g)$ and $g \in O(f)$ are true, these two functions are called asymptotically equivalent in terms of the O-notation. This is denoted by $f \in \Theta(g)$.

(c) Obviously $2^n \leq 3^n$ for all $n \geq 1$. The converse is false though, because a c such that $3^n \leq c2^n$ must fulfill $c \geq (3/2)^n$ for arbitrarily big n, but since $(3/2)^n$ is unbounded there can be no such c.

Exercise 3: Sort Functions by Asymptotic Growth
(6 Points)

Sort the following functions by asymptotic growth using the O-notation. Write $g \prec O f$ if $g \in O(f)$ and $f \notin O(g)$. Write $g = O f$ if $f \in O(g)$ and $g \in O(f)$.

<table>
<thead>
<tr>
<th>n^2</th>
<th>\sqrt{n}</th>
<th>2^n</th>
<th>$\log(n^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3^n</td>
<td>n^{100}</td>
<td>$\log(\sqrt{n})$</td>
<td>$(\log n)^2$</td>
</tr>
<tr>
<td>$\log n$</td>
<td>$10^{100}n$</td>
<td>$n!$</td>
<td>$n \log n$</td>
</tr>
<tr>
<td>$n \cdot 2^n$</td>
<td>n^n</td>
<td>$\sqrt{\log n}$</td>
<td>n</td>
</tr>
</tbody>
</table>

Sample Solution

$$< O \quad \sqrt{\log n} \quad < O \quad \log(\sqrt{n}) = O \quad \log n = O \quad \log(n^2)$$

$$< O \quad (\log n)^2 \quad < O \quad \sqrt{n} \quad < O \quad n \quad = O \quad 10^{100}n$$

$$< O \quad n \log n \quad < O \quad n^2 \quad < O \quad n^{100} \quad < O \quad 2^n$$

$$< O \quad n \cdot 2^n \quad < O \quad 3^n \quad < O \quad n! \quad < O \quad n^n$$