
Albert-Ludwigs-Universität, Inst. für Informatik
Prof. Dr. Fabian Kuhn
Philipp Bamberger, Yannic Maus

Theoretical Computer Science - Bridging Course

Summer Term 2018

Exercise Sheet 8

for getting feedback submit (electronically) before the start of the tutorial on
17th of December 2018.

Exercise 1: The class P

Show that the following languages are in P .

(a) 5-Cycle = {〈G〉 | G is a graph and contains a cycle of length 5}.
Remark: A cycle of length 5 in G are five distinct nodes v0, . . . , v4 such that the edges {vi, vi+1 mod 5},
i = 0, . . . , 4 exist in G.

(b) L = {anb3n | n ≥ 0}

(c) 17-Independent Set ={〈G〉 | G is a graph and contains an independent set of size 17}.
Remark: An independent set of a graph with size s is a set S ⊆ V , |S| = s such that {v, w} /∈ E
for all u,w ∈ S.

(d) Find a proper citation (e.g., via google) which states whether Primes={〈n〉 | n ∈ N is prime} is
in P or not.

Sample Solution

(a) We show the result by giving an algorithm with polynomial runtime. We assume that the graph
is stored with an adjacency matrix (one can switch between adjacency matrices and adjacency
lists in polynomial time). Then we simply iterate through all 5-tuples v1, . . . , v5 of nodes in V
and for each of them we test whether all the 5 edges {vi, vi+1 mod 5}, i = 0, . . . , 4 are there. If
this is the case for any of the 5-tuples we return that the graph contains a cycle otherwise we say
that it does not. The test for a single edge takes time O(1). Hence the test for a single five tuple
takes time 5 ·O(1) = O(1). As there are at most

(|V |
5

)
≤ |V |5 different 5 tuples the total runtime

is upper bounded by O(|V |5), which is polynomial in the input length.

(b) It is not difficult to construct a pushdown automaton for the language which works as follows:
First it pushes three As to the stack when reading an a and then it removes a single A from the
stack with every b (it does not accept any a after it has read the first b). The automaton accepts
the input if the stack is empty at the end of the input. This pushdown automaton can immediately
be simulated by a 2-band Turing machine (where the second band works as the stack), which shows
that the language is in P

1

(c) We show the result by giving an algorithm with polynomial runtime. We assume that the graph
is stored with an adjacency matrix. Then we simply iterate through all 17-tuples v1, . . . , v17 of
nodes in V and for each of them we test whether none of the edges {vi, vj}, i 6= j exist. If this is
the case for any of the 17 tuples we return true, otherwise false.

For a single 17-tuple there are
(
17
2

)
≤ 172 edges to be tested. As we can test for a single edge in

time O(1) the test for a single tuple takes time 172 ·O(1) = O(1). There are at most
(|V |
17

)
≤ |V |17

tuples. Thus the runtime is upper bounded by |V |17 ·O(1) = O(|V |17), which is polynomial.

(d) E.g., the journal version of the original paper. Agrawal, Manindra; Kayal, Neeraj; Saxena, Nitin
(2004). PRIMES is in P. Annals of Mathematics. 160 (2): 781-793.

Repetition of Course Material (0 Points)

Let L1, L2 be languages (problems) over alphabets Σ1,Σ2. Then L1 ≤p L2 (L1 is polynomially
reducible to L2), iff a function f : Σ∗1 → Σ∗2 exists, that can be calculated in polynomial time and

∀s ∈ Σ1 : s ∈ L1 ⇐⇒ f(s) ∈ L2.

Language L is called NP-hard, if all languages L′ ∈ NP are polynomially reducible to L, i.e.

L NP-hard⇐⇒ ∀L′ ∈ NP : L′ ≤p L.

The reduction relation ’≤p’ is transitive (L1 ≤p L2 and L2 ≤p L3 ⇒ L1 ≤p L3). Therefore, in order
to show that L is NP-hard, it suffices to reduce a known NP-hard problem L̃ to L, i.e. L̃ ≤p L.
Finally a language is called NP-complete (⇔: L ∈ NPC), if

1. L ∈ NP and

2. L is NP-hard.

Exercise 2: The Class NPC (7 Points)

This exercise (and similar ones) is really (!!) important for the course.

Show HittingSet :={〈U , S, k〉 |universe U has subset of size ≤ k that hits all sets in S ⊆ 2U}∈NPC.1

Use that VertexCover := {〈G, k〉 | Graph G has a vertex cover of size at most k} ∈ NPC.

Remark: A hitting set H ⊆ U for a given universe U and a set S = {S1, S2, . . . , Sm} of subsets
Si ⊆ U , fulfills the property H ∩ Si 6= ∅ for 1 ≤ i ≤ m (H ’hits’ at least one element of every Si).
A vertex cover is a subset V ′ ⊆ V of nodes of G = (V,E) such that every edge of G is adjacent to a
node in the subset.

Hint: For the poly. transformation (≤p) you have to describe an algorithm (with poly. run-time!) that
transforms an instance 〈G, k〉 of VertexCover into an instance 〈U , S, k〉 of HittingSet, s.t. a
vertex cover of size ≤ k in G becomes a hitting set of U of size ≤ k for S and vice versa(!).

Sample Solution

We first show that hitting set belongs in NP, by engineering a deterministic polynomial time verifier
for it. Then we will prove that it is an NP-hard problem, by reducing a known NP-hard problem,
vertex cover (as mentioned in the hint), to hitting set in polynomial time.

Guess and Check: Given a finite set U , a collection S of subsets of U , a positive integer k and a
finite set H as a certificate, the following deterministic polynomial time verifier for hitting set confirms

1The power set 2U of some ground set U is the set of all subsets of U . So S ⊆ 2U is a collection of subsets of U .

2

in polynomial time that (U , S) has a hitting set of size at most k. Let λ be the sum of the sizes of
all the subsets Si in S and δ the size of U . Note that we can check if A is a subset of B with the
following brute-force algorithm: ∀a ∈ A check if ∃b ∈ B : a = b which needs O(|A| · |B|) comparisons.
We can check if H is a subset of U that has at most k elements with O(k · δ) comparisons and if it
contains at least one element from each subset Si in the collection S, with O(λ · k) comparisons. We
accept iff both checks are true. These two checks are obviously equivalent to the problem’s definition,
so hitting set has a polynomial time verifier. Therefore it belongs in NP.

Polynomial Reduction of VertexCover to HittingSet: We will create a polynomial time
reduction from vertex cover to hitting set, proving that since vertex cover is NP-hard, hitting set
must also be NP-hard.
The reduction takes as input an undirected graph G = (V,E), where V is a set of nodes and E a set
of edges defined over those nodes, as well as a positive integer k and outputs the set V , the collection
E = {e1, e2, . . . , en} of subsets of V and the positive integer k. We claim the following equivalence
holds:

“G has a vertex cover of size at most k” ⇔ “(V,E) has a hitting set of size at most k”

Here is the proof:

“G has a vertex cover of size at most k” ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ edge ei = {ui, vi} ∈ E, ui ∈ V ′ or vi ∈ V ′ ⇔
∃V ′ ⊆ V : |V ′| ≤ k and ∀ subset ei in collection E ∃c ∈ ei : c ∈ V ′ ⇔
“(V,E) has a hitting set of size at most k”

This reduction takes time linear to the size of the input (all it does is copy the input to the output),
therefore polynomial. Also, as we showed, it is correct. Therefore, hitting set is at least as hard as
vertex cover and since vertex cover is NP-hard, so is hitting set.
One might notice that this reduction was rather straightforward. This makes sense, since vertex cover
is a special version of hitting set, where each subset Si in the collection S has exactly two elements of
U . Obviously, no problem can be harder than its generalization and since vertex cover is NP-hard,
hitting set (as a generalization of vertex cover) must also be NP-hard.

3

