
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Algorithms and Data Structures

Winter Term 2019/2020

Exercise Sheet 4

Remark: For this exercise, watch the relevant parts of the sixth and seventh video lecture.

Exercise 1: Hashing - Collision Resolution with Open Addressing

(a) Let h(s, j) := h1(s)− 2j mod m and let h1(x) = x + 2 mod m. Insert the keys 51, 13, 21, 30, 23,
72 into the hash table of size m = 7 using linear probing for collision resolution (the table should
show the final state).

0 1 2 3 4 5 6

(b) Let h(s, j) := h1(s)+ j ·h2(s) mod m and let h1(x) = x mod m and h2(x) = 1+
(
x mod (m−1)

)
.

Insert the keys 28, 59, 47, 13, 39, 69, 12 into the hash table of size m = 11 using the double
hashing probing technique for collision resolution. The hash table below should show the final
state.

0 1 2 3 4 5 6 7 8 9 10

(c) Repeat part (a) using the “ordered hashing” optimization from the lecture.

(d) Repeat part (b) using the “Robin-Hood hashing” optimization from the lecture.

Exercise 2: Amortized Analysis - Stack with Multipop

Consider the data structure “stack” in which elements can be stored in a last in first out manner. For
a stack S we have the following operations:

• S.push(x) puts element x onto S.

• S.pop() deletes the topmost element of S. Assume pop() is only called if S is nonempty.

• S.multipop(k) removes the k top objects of S, popping the entire stack if S contains fewer than
k objects.

Assume the costs of S.push(x) and S.pop() are 1 and the cost of S.multipop(k) is min(k, |S|) where
|S| is the current number of elements in S.

Use the bank account paradigm to show that all three operations have constant amortized cost.
Assume that S is initially empty.

Exercise 3: Amortized Analysis - a Hierarchy of Arrays

Consider the following data structure. We define arrays Ai (for i = 0, 1, 2, . . .), where Ai has size 2i

and stores integer keys in a sorted manner (ascending). During the runtime we ensure that each Array
is either completely full, or completely empty.
We informally describe an operation insert(k). It first tries to insert the key k into A0. If A0 is
empty we insert k into A0 and are done. If A0 happens to be already full (i.e. it contains one element),
A0 is merged with k to form a new sorted array B1 of size 2. If A1 is empty, B1 becomes the new
Array A1 and we are done. Else B1 is merged with A1 into a sorted Array B2 of size 4 and the same
procedure is repeated with A2, A3, . . . until we find an Array Ai that is empty.

(a) Describe a subprocedure merge(A,B) (as pseudo code or as informal algorithm description) that
merges the contents of two sorted Arrays A,B of size m into a new, sorted array of size 2m in
O(m) runtime. Explain why your algorithm has the runtime O(m).

(b) Show that any series of n insert-operations has an amortized runtime of at most O(log n).

