Remark: This is a repetition exercise with a selection of previous topics based on your vote. Since next week will be the final lesson, there is no need to submit this exercise for feedback.

Exercise 1: Counting Bit Flips of a Binary Counter

Consider a counter represented as bit string. We increment (add 1 to) the counter \(n \) times. Show that the amortized number bit flips per increment operation is \(O(1) \). You may assume that your counter starts with 0 and has at least \(\log_2 n \) bits.

(a) Analyze the number of bit flips using the aggregate method. That is, count the total number of bit flips and divide it by the number of operations.

(b) Analyze the number of bit flips using the accounting method. Specifically, show that by paying a constant amount of coins to an account per operation, and subtracting the true cost per operation from the account, the account still stays positive all the time.

Exercise 2: More Hashing

Let \(h(s, j) := h_1(s) + j \cdot h_2(s) \mod 13 \) and let \(h_1(x) = 2x + 3 \mod 13 \) and \(h_2(x) = 2 + (x \mod 12) \).

(a) Give an infinite key set (a subset of \(\mathbb{N} \)) that are mapped to the same table entry (for \(j = 0 \)).

(b) Insert the keys \(3,11,23,5,24,8,21,10 \) into the hash table of size \(m = 11 \) using the double hashing probing technique for collision resolution. The hash table below should show the final state.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise 3: Frequent Numbers

You are given an Array \(A[0 \ldots n-1] \) of \(n \) integers and the goal is to determine frequent numbers which occur at least \(n/3 \) times in \(A \). There can be at most three such numbers, if any exist at all.

(a) Give an algorithm with runtime \(O(n \log n) \) based on the divide and conquer principle that outputs the frequent numbers (if any exist).

(b) Argue why your algorithm is correct, give a recurrence relation for the runtime and use it to prove the runtime.
Exercise 4: Analysing an Algorithm

Algorithm 1 algorithm(A) \(\triangleright\) integer array \(A[0\ldots n-1]\)
\[
\text{for } i \leftarrow 1 \text{ to } n-1 \text{ do }
\quad \text{for } j \leftarrow 0 \text{ to } i-1 \text{ do }
\quad \quad \text{for } k \leftarrow 0 \text{ to } n-1 \text{ do }
\quad \quad \quad \text{if } |A[i] - A[j]| = A[k] \text{ then }
\quad \quad \quad \quad \text{return true}
\text{return false}
\]

(a) What does the above algorithm compute?

(b) Give the asymptotic running time of the above algorithm and a short explanation for that.

(c) Describe an algorithm that computes the same output but asymptotically faster.