Algorithms and Datastructures
Runtime analysis Minsort / Heapsort, Induction
Structure

Runtime Example
- Minsort

Basic Operations

Runtime analysis
- Minsort
- Heapsort
 - Introduction to Induction

Logarithms
How long does the program run?

- In the last lecture we had a schematic
- **Observation:** it is going to be “disproportionately” slower the more numbers are being sorted
- How can we say more precisely what is happening?
How can we analyze the runtime?

- Ideally we have a formula which provides the runtime of the program for a specific input

- **Problem**: the runtime is depends on many variables, especially:
 - What kind of computer the code is executed on
 - What is running in the background
 - Which compiler is used to compile the code

- **Abstraction 1**: analyze the number of basic operations, rather than analyzing the runtime
Basic Operations

Incomplete list of basic operations:

- Arithmetic operation, for example: $a + b$
- Assignment of variables, for example: $x = y$
- Function call, for example: $\text{minsort}(lst)$
Basic Operations

<table>
<thead>
<tr>
<th>Intuitive:</th>
<th>Better:</th>
<th>Best:</th>
</tr>
</thead>
<tbody>
<tr>
<td>lines of code</td>
<td>lines of machine code</td>
<td>process cycles</td>
</tr>
</tbody>
</table>

Important:

The actual runtime has to be roughly proportional to the number of operations.
How many operations does \textit{Minsort} need?

- \textbf{Abstraction 2:} we calculate the upper (lower) bound, rather than exactly counting the number of operations

\textbf{Reason:} runtime is approximated by number of basic operations, but we can still infer:

- Upper bound
- Lower bound

- \textbf{Basic Assumption:}
 - n is size of the input data (i.e. array)
 - $T(n)$ number of operations for input n
How many operations does Minsort need?

- **Observation:** the number of operations depends only on the size n of the array and not on the content!
- **Claim:** there are constants C_1 and C_2 such that:

\[C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2 \]

- This is called “quadratic runtime” (due to n^2)
Runtime Example

\begin{itemize}
 \item Number of operations
 \item Number of input elements n
 \item $C_2 = \frac{7}{2}$ could have been larger or smaller (exact value not relevant)
 \item $C_1 = \frac{1}{2}$ could have been chosen smaller (not relevant), but not larger
\end{itemize}

$$T(n) = \frac{1}{2} n^2 + 3n$$
We declare:

- Runtime of operations: $T(n)$
- Number of Elements: n
- Constants: C_1 (lower bound), C_2 (upper bound)
 \[C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2 \]
- Number of operations in round i: T_i

Figure: *Minsort* at iteration $i = 4$. We have to check $n - 3$ elements
Runtime analysis - Minsort

Runtime for each iteration:

\[T_1 \leq C'_2 \cdot (n - 0) \]
\[T_2 \leq C'_2 \cdot (n - 1) \]
\[T_3 \leq C'_2 \cdot (n - 2) \]
\[T_4 \leq C'_2 \cdot (n - 3) \]
\[\vdots \]
\[T_{n-1} \leq C'_2 \cdot 2 \]
\[T_n \leq C'_2 \cdot 1 \]

\[T(n) = C'_2 \cdot (T_1 + \cdots + T_n) \leq \sum_{i=1}^{n} (C'_2 \cdot i) \]

Figure: Minsort at iteration \(i = 4 \)

\(n - 3 \) elements left
Runtime analysis - Minsort

Alternative: Analyse the Code:

```python
def minsort(elements):
    for i in range(0, len(elements) - 1):
        minimum = i
        for j in range(i + 1, len(elements)):
            if elements[j] < elements[minimum]:
                minimum = j
        if minimum != i:
            elements[i], elements[minimum] = elements[minimum], elements[i]
    return elements
```

\[
T(n) \leq \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} C'_2 = \sum_{i=0}^{n-2} (n - i - 1) \cdot C'_2 = \sum_{i=1}^{n-1} (n - i) \cdot C'_2 \leq \sum_{i=1}^{n} i \cdot C'_2
\]

Remark: \(C'_2 \) is cost of comparison \(\Rightarrow \) assumed constant
Proof of upper bound: \(T(n) \leq C_2 \cdot n^2 \)

\[
T(n) \leq \sum_{i=1}^{n} C'_2 \cdot i \\
= C'_2 \cdot \sum_{i=1}^{n} i \\
\downarrow \text{Small Gauss sum} \\
= C'_2 \cdot \frac{n(n + 1)}{2} \\
\leq C'_2 \cdot \frac{n(n + n)}{2}, \quad 1 \leq n \\
= C'_2 \cdot \frac{2 \cdot n^2}{2} = C'_2 \cdot n^2
\]
Proof of lower bound: \(C_1 \cdot n^2 \leq T(n) \)

Like for the upper bound there exists a \(C_1 \). Summation analysis is the same, only final approximation differs

\[
T(n) \geq \sum_{i=1}^{n-1} C'_1 \cdot (n - i) = C'_1 \sum_{i=1}^{n-1} i
\]

\[
\geq C'_1 \cdot \frac{(n-1) \cdot n}{2} \quad \text{How do we get to } n^2?
\]

\[
\downarrow \quad n - 1 \geq \frac{n}{2} \text{ for } n \geq 2
\]

\[
\geq C'_1 \cdot \frac{n \cdot n}{2 \cdot 2} = C'_1 \cdot \frac{n^2}{4} \]
Runtime Analysis:

- Upper bound: \(T(n) \leq C_2' \cdot n^2 \)
- Lower bound: \(\frac{C_1'}{4} \cdot n^2 \leq T(n) \)

Summarized:

\[
\frac{C_1'}{4} \cdot n^2 \leq T(n) \leq C_2' \cdot n^2
\]

Quadratic runtime proven:

\[
C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2
\]
The runtime is growing quadratically with the number of elements n in the list.

With constants C_1 and C_2 for which $C_1 \cdot n^2 \leq T(n) \leq C_2 \cdot n^2$.

3 × elements \Rightarrow 9 × runtime

- $C = 1$ ns (1 simple instruction ≈ 1 ns)
- $n = 10^6$ (1 million numbers = 4 MB with 4 B/number)
 - $C \cdot n^2 = 10^{-9} \text{s} \cdot 10^{12} = 10^3 \text{s} = 16.7 \text{min}$
- $n = 10^9$ (1 billion numbers = 4 GB)
 - $C \cdot n^2 = 10^{-9} \text{s} \cdot 10^{18} = 10^9 \text{s} = 31.7 \text{years}$

Quadratic runtime = “big” problems unsolvable
Intuitive to extract minimum:

- **Minsort**: to determine the minimum value we have to iterate through all the unsorted elements.
- **Heapsort**: the root node is always the smallest (minheap). We only need to repair a part of the full tree after the delete operation.

Formal:

- Let $T(n)$ be the runtime for the **Heapsort** algorithm with n elements
- On the next pages we will prove $T(n) \leq C \cdot n \log_2 n$
Depth of a binary tree:

- **Depth** d: longest path through the tree
- Complete binary tree has $n = 2^d - 1$ nodes
- Example: $d = 4$
 $\Rightarrow n = 2^4 - 1 = 15$

Figure: Binary tree with 15 nodes
Induction Basics:

- You want to show that assumption $A(n)$ is valid $\forall n \in \mathbb{N}$
- We show induction in two steps:
 1. **Induction basis:** we show that our assumption is valid for one value (for example: $n = 1, A(1)$).
 2. **Induction step:** we show that the assumption is valid for all n (normally one step forward: $n = n + 1, A(1), \ldots, A(n)$).
- If both has been proven, then $A(n)$ holds for all natural numbers n by induction
Claim:

A complete binary tree of depth d has $v(d) = 2^d - 1$ nodes

- **Induction basis**: assumption holds for $d = 1$

 Root

 $v(1) = 2^1 - 1 = 1$

 ⇒ correct ✓

Figure: Tree of depth 1 has 1 node
Number of nodes $v(d)$ in a binary tree with depth d:

- **Induction assumption**: $v(d) = 2^d - 1$
- **Induction basis**: $v(1) = 2^1 - 1 = 2^1 - 1 = 1\, \checkmark$
- **Induction step**: to show for $d := d + 1$

$$v(d + 1) = 2 \cdot v(d) + 1$$

$$= 2 \cdot (2^d - 1) + 1$$

$$= 2^{d+1} - 2 + 1$$

$$= 2^{d+1} - 1\, \checkmark$$

\Rightarrow **By induction**: $v(d) = 2^d - 1\, \forall d \in \mathbb{N}\, \square$
Heapsort has the following steps:

- **Initially**: heapify list of n elements
- **Then**: until all n elements are sorted
 - Remove root (=minimum element)
 - Move last leaf to root position
 - Repair heap by sifting
Runtime of heapify depends on depth d:

Runtime of heapify with depth of d:

- No costs at depth d with 2^{d-1} (or less) nodes
- The cost for sifting with depth 1 is at most $1C$ per node
- In general: sifting costs are linear with path length and number of nodes
Heapify total runtime:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Path length</th>
<th>Costs per node</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>2^{d-1}</td>
<td>0</td>
<td>$\leq C \cdot 0$</td>
<td>$\leq C \cdot 1$</td>
</tr>
<tr>
<td>$d-1$</td>
<td>2^{d-2}</td>
<td>1</td>
<td>$\leq C \cdot 1$</td>
<td>Standard $\leq C \cdot 2$</td>
</tr>
<tr>
<td>$d-2$</td>
<td>2^{d-3}</td>
<td>2</td>
<td>$\leq C \cdot 2$</td>
<td>Equation $\leq C \cdot 3$</td>
</tr>
<tr>
<td>$d-3$</td>
<td>2^{d-4}</td>
<td>3</td>
<td>$\leq C \cdot 3$</td>
<td>$\leq C \cdot 4$</td>
</tr>
</tbody>
</table>

In total: $T(d) \leq \sum_{i=1}^{d} \left(C \cdot (i - 1) \cdot 2^{d-i} \right) \leq \sum_{i=1}^{d} \left(C \cdot i \cdot 2^{d-i} \right)$
Heapify total runtime:

\[T(d) \leq C \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \leq C \cdot 2^{d+1} \]

\[\text{See next slides} \]

- **Hence:** Resulting costs for heapify:

 \[T(d) \leq C \cdot 2^{d+1} \]

- **However:** We want costs in relation to \(n \)
Heapify total runtime:

\[T(d) \leq C \cdot 2^{d+1} \]

- A binary tree of depth \(d \) has \(2^{d-1} \leq n \) nodes
- \(2^{d-1} - 1 \) nodes in full tree till layer \(d - 1 \)
- At least 1 node in layer \(d \)
- Equation multiplied by \(2^2 \)
 \[\Rightarrow 2^{d-1} \cdot 2^2 \leq 2^2 \cdot n \]
- Cost for heapify:
 \[\Rightarrow T(n) \leq C \cdot 4 \cdot n \]
We want to proof (induction assumption):

\[\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \leq 2^{d+1} \]

\[A(d) \leq B(d) \]

We denote the left side with \(A \), the right side with \(B \).
Induction basis: $d := 1$:

\[
A(d) \leq B(d)
\]

\[
\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \leq 2^{d+1}
\]

\[
\sum_{i=1}^{1} \left(i \cdot 2^{1-i} \right) \leq 2^{1+1}
\]

\[
2^0 \leq 2^2 \checkmark
\]
Induction step: \((d := d + 1)\):

- **Idea:** Write down right-hand formula and try to get \(A(d)\) and \(B(d)\) out of it

\[
A(d) \leq B(d) \quad \Rightarrow \quad A(d + 1) \leq B(d + 1)
\]

\[
\sum_{i=1}^{d+1} \left(i \cdot 2^{d+1-i} \right) \leq 2^{d+1+1}
\]

\[
2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) \leq 2 \cdot 2^{d+1}
\]

\[
\vdots
\]
Induction step: \((d := d + 1)\):

\[
\begin{align*}
2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) & \leq 2 \cdot 2^{d+1} \\
2 \cdot \sum_{i=1}^{d+1} \left(i \cdot 2^{d-i} \right) & \leq 2 \cdot B(d) \\
2 \cdot \sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) + 2 \cdot (d + 1) \cdot 2^{d-(d+1)} & \leq 2 \cdot B(d) \\
2 \cdot A(d) + (d + 1) & \leq 2 \cdot B(d)
\end{align*}
\]

\[\textbf{Problem:}\] does not work but claim still holds
Induction - Example 2

Working proof:

■ Show a little bit stronger claim

\[
\sum_{i=1}^{d} \left(i \cdot 2^{d-i} \right) \leq 2^{d+1} - d - 2 \leq 2^{d+1}
\]

■ Advantage: results in a stronger induction assumption

⇒ exercise
Runtime of the other operations:

- $n \times$ taking out maximum (each constant cost)
- Maximum of d steps for each of $n \times$ heap repair
 \[\Rightarrow \text{Depth } d \text{ of initial heap is } \leq 1 + \log_2 n \]

- \[2^{d-1} \leq n \Rightarrow d - 1 \leq \log_2 n \Rightarrow d \leq 1 + \log_2 n \]

Recall: the depth and number of elements is decreasing

- **Hence**: $T(n) \leq n \cdot d \cdot C \leq n \cdot (1 + \log_2 n) \cdot C$
- We can reduce this to:

 \[T(n) \leq 2 \cdot n \log_2 n \cdot C \quad \text{(holds for } n > 2) \]
Runtime costs:

- **Heapify**: $T(n) \leq 4 \cdot n \cdot C$
- **Remove**: $T(n) \leq 2 \cdot n \log_2 n \cdot C$
- **Total runtime**: $T(n) \leq 6 \cdot n \log_2 n \cdot C$
- **Constraints**:
 - **Upper bound**: $C_2 \cdot n \log_2 n \geq T(n)$ (for $n \geq 2$)
 - **Lower bound**: $C_1 \cdot n \log_2 n \leq T(n)$ (for $n \geq 2$)
 - $\Rightarrow C_1$ and C_2 are constant
Base of Logarithms

Logarithm to different bases:

\[\log_a n = \frac{\log_b n}{\log_b a} = \log_b n \cdot \frac{1}{\log_b a} \]

The only difference is a constant coefficient \(\frac{1}{\log_b a} \)

Examples:

- \(\log_2 4 = \log_{10} 4 \cdot \frac{1}{\log_{10} 2} = 0.602 \ldots \cdot 3.322 \ldots = 2 \checkmark \)
- \(\log_{10} 1000 = \log_e 1000 \cdot \frac{1}{\log_e 10} = \ln 1000 \cdot \frac{1}{\ln 10} = 3 \checkmark \)
Runtime Example

Runtime of $n \log_2 n$:

- Assume we have constants C_1 and C_2 with

 $$C_1 \cdot n \cdot \log_2 n \leq T(n) \leq C_2 \cdot n \cdot \log_2 n \quad \text{for} \ n \geq 2$$

- $2 \times$ elements \Rightarrow only slightly larger than $2 \times$ runtime
 - $C = 1$ ns (1 simple instruction ≈ 1 ns)
 - $n = 2^{20}$ (1 million numbers = 4 MB with 4 B/number)
 - $C \cdot n \cdot \log_2 n = 10^{-9} \cdot 2^{20} \cdot 20 = 21.0$ ms
 - $n = 2^{30}$ (1 billion numbers = 4 GB)
 - $C \cdot n \cdot \log_2 n = 10^{-9} \cdot 2^{30} \cdot 30 = 32$ s

- **Runtime** $n \log_2 n$ is nearly as good as linear!
Further Literature

- **Course literature**

Further Literature

- Mathematical Induction

[Wik] Mathematical induction
https://en.wikipedia.org/wiki/Mathematical_induction