Algorithms and Datastructures
Runtime analysis Minsort / Heapsort, Induction

Albert-Ludwigs-Universitit Freiburg

FREIBURG

2
=

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science

Algorithms and Datastructures, October 2018

Structure

Runtime Example
Minsort

Basic Operations
Runtime analysis

Minsort

Heapsort
Introduction to Induction

Logarithms

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd

2/47

Runtime analysis - Minsort

300

250

200 x

150 X

100 X

runtime in ms

0 2 4 6 8 10 12 14 16 18 2
n/ 1000

How long does the program run?
In the last lecture we had a schematic

Observation: it is going to be “disproportionately” slower
the more numbers are being sorted

How can we say more precisely what is happening?

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 4747

Runtime analysis - Minsort

How can we analyze the runtime?
Ideally we have a formula which provides the runtime of
the program for a specific input

Problem: the runtime is depends on many variables,
especially:

What kind of computer the code is executed on

What is running in the background

Which compiler is used to compile the code
Abstraction 1: analyze the number of basic operations,
rather than analyzing the runtime

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 5/47

Basic Operations

UNI

O
&
2
a
7]
o
[* 9

Incomplete list of basic operations:

Arithmetic operation, for example: a + b
Assignment of variables, for example: x = y
Function call, for example: minsort(Ist)

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 7147

Basic Operations

Mm

lines of code lines of machine process cycles
code

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 8/47

Runtime analysis - Minsort

UNI

How many operations does Minsort need?

Abstraction 2: we calculate the upper (lower) bound,
rather than exactly counting the number of operations

Reason: runtime is approximated by number of basic
operations, but we can still infer:

Basic Assumption:

n is size of the input data (i.e. array)
T(n) number of operations for input n

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 10/47

O
&
2
a
7]
o
[* 9

Runtime analysis - Minsort

How many operations does Minsort need?

Observation: the number of operations depends only on
the size n of the array and not on the content!

Claim: there are constants C; and C, such that:
Cy-n?<T(n)<Cyp-n?

This is called “quadratic runtime” (due to n?)

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 11/47

Runtime Example

number of operations C, =712 could have

350 been larger or small
] (exact value not

300 relevant)

250

200

150

100] 1 5
1 T(n) = 3" +3n

507 / 1 . n2 C4=1/2 could have been
1 2 choosen smaller (not
0}) 2 R S S relevant), but not larger

number of input elements n

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 12/47

Runtime analysis - Minsort

We declare:
Runtime of operations: T(n)
Number of Elements: n
Constants: Cq (), Co ()
Ci1-n?<T(n)<Cy-n?
Number of operations in round i: T;

=0l Hlﬂ | D

123127 4 6108 15145 11 9 13

Figure: Minsort at iteration i = 4. We have to check n—3 elements

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 13/47

Runtime analysis - Minsort

Runtime for each

n—3 elements left iteration:
Nm . Ty < Cp+(n—0)
To<Ch-(n—1)
T3<Ch-(n—2)
D T4 <C5-(n-3)
-alill _
123127 4 6108 1514 5 11 9 13
Tho1<Ch-2
Figure: Minsort at iteration i = 4 Th<Ch-1

T(n)=Ch-(Ty+-+T) <Y (Ch
i=1

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 14/47

Runtime analysis - Minsort

O
&
2
@
7]
o
[* 9

Alternative: Analyse the Code: g
minsort (elements):
for i in range(0, len(elements)—1):
minimum = i
for j in range(i+1, len(elements)): n-i-1
if elements[j] < elements[minimum]: } const. times | n-1
LS] runtime times
it minimum != i:
elements[i], elements[minimum] = \
elements [minimum], elements[i]
elements
n—2 n—1 n—2 n—1
/ : / : / oA
T(n)<) Y Co=) (n—i—1)-Co=Y (n—1)-Cy<) i-Cj
i=0 j=i+1 i=0 i=1 i=1

Remark: C;, is cost of comparison = assumed constant

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 15/47

Runtime analysis - Minsort

UNI

O
&
2
a
7]
o
[* 9

Proof of : T(n) < Cy-n?

o,
=
IA
™
0
A

1 Small Gauss sum

_ C,2‘n(n2+1)

AL
2

= C/2—22n = C,2'n2

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 16 /47

Runtime analysis - Minsort

UNI

O
&
2
a
7]
o
[* 9

Proof of : C1-n? < T(n)

Like for the upper bound there exists a C;. Summation
analysis is the same, only final approximation differs

n—1 n—1
T(n) > Y Ci-(n—i)=C{ Y i
i=1 i=1

_1).

> CQ% How do we get to n??
[} n—1zgforn22
n-n C|

> C.—— = Z1.p2

= Gop=gn

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 18/47

Runtime analysis - Minsort

UNI

O
&
2
@
7]
o
[* 9

Runtime Analysis:
Upper bound: T(n) < C,-n?

C/
Lower bound: 71 -n?> < T(n)

Summarized:

C/
T1-n2 < T(n)<Ch-n?

Quadratic runtime proven:

Ci-n><T(n)<Cy-n?

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 19/47

Runtime Example

The runtime is growing quadratically with the number of
elements n in the list
With constants C; and C, for which C-n? < T(n) < C»-n?
3 x elements = 9 x runtime
C =1ns (1 simple instruction = 1ns)
n =108 (1 million numbers = 4MB with 4B/number)
C-n?=10"9s-10'2=10%s = 16.7min
n =10° (1 billion numbers = 4GB)
C-n?=10"9s-10" =10%s = 31.7 years

Quadratic runtime = “big” problems unsolvable

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 20/47

Runtime - Heapsort

UNI

O
&
2
a
7]
o
[* 9

Intuitive to extract minimum:

Minsort: to determine the minimum value we have to
iterate through all the unsorted elements.

Heapsort: the root node is always the smallest (minheap).
We only need to repair a part of the full tree after the delete
operation.

Formal:

Let T(n) be the runtime for the Heapsort algorithm with n
elements

On the next pages we will proof T(n) < C-nlog,n

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 22/47

Runtime - Heapsort

UNI

O
&
2
a
7]
o
[* 9

Depth of a binary tree:

Depth d: longest path
through the tree

Complete binary tree has
n =291 nodes
Example: d =4
=n=2%-1=15

Root

Leaves

Figure: Binary tree with 15 nodes

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 23/47

Induction

Basics:

You want to show that assumption A(n) is valid Vn € N
We show induction in two steps:
Induction basis: we show that our assumption is valid for
one value (for example: n=1, A(1)).
Induction step: we show that the assumption is valid for all
n (normally one step forward: n=n+1,A(1),...,A(n)).
If both has been proven, then A(n) holds for all natural
numbers n by induction

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 25/47

Induction - Example 1

O
=4
-
~a
zI.IJ
S&

A complete binary tree of depth d has v(d) = 29 — 1 nodes

Induction basis: assumption holds for d = 1

Root

O v(1)=2"—1=1

= correct v’
Figure: Tree of depth 1 has 1

node

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 26/47

Induction - Example 1

UNI
FREIBURG

Number of nodes v(d) in a binary tree with depth @
Induction assumption: v(d) =29 — 1
Induction basis: v(1)=29—-1=2"—-1=1
Induction step: to show ford :=d +1

Root

vid+1)=2-v(d)+1

— =2-(2d—1)+1

+

© © =201 241
=21/

Figure: binary tree with subtrees
= By induction: v(d)=29-1Vd e NO

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 27147

Runtime - Heapsort

UNI

O
&
2
a
7]
o
[* 9

Heapsort has the following steps:
Initially: heapify list of n elements

Then: until all n elements are sorted

Remove root (=minimum element)
Move last leaf to root position
Repair heap by sifting

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 29/47

Runtime - Heapsort

Heapify

Runtime of heapify depends on depth d:

-------------------- Depth 1 — 29 nodes
----------- Depth 2 — 2! nodes

------ Depth 3 — 22 nodes

--- Depth 4 — 23 nodes

Runtime of heapify with depth of d:
No costs at depth d with 29~ (or less) nodes
The cost for sifting with depth 1 is at most 1C per node

In general: sifting costs are linear with path length and
number of nodes

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 30/47

Runtime - Heapsort

Heapify

Heapify total runtime:

Depth 1 — 20 nodes
Depth 2 — 21 nodes
Depth 3 — 22 nodes

Depth 4 — 23 nodes
Generally: Depth d — 291 nodes

Depth | Nodes | Path length | Costs per node | Upper bound
d 2d-1 0 < C-O <C-1
d—1 | 29-2 1 <C-1 Standard< C-2
d—2 | 293 2 <C-2 Equation< C-3
d-3 | 294 3 <C-3 <C-4
d d
Intotal: ~ T(@)<) (C-(i-1)-227)<) (Ci2)

i=1

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 31/47

n
e

Runtime - Heapsort

Heapify

UNI

FREIBURG

Heapify total runtime:

T(d)<C. i</ od- ><c-2d+1

i=1

See next slides

Hence: Resulting costs for heapify:
T(d) < C-29+1

However: We want costs in relation to n

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 32/47

Runtime - Heapsort 9

Heapif 2
pify 2

. . 2

Heapify total runtime: Su

T(d) < C-29+1

A binary tree of depth d has 29~ ' < n nodes

2491 _ 1 nodes in full tree
till layer d — 1

At least 1 node in layer d
Equation multiplied by 22

= 20-1.22<22.p

Cost for heapify: Figure: Partial binary tree
=Tn)<C-4-n

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 33/47

Induction - Example 2

We want to proof (induction assumption):

d
Z(i'Qdfi) < pd+
g o

A(d) < B(d)

We denote the left side with A, the right side with B

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 35/47

Induction - Example 2

Induction basis: d :=1:

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 36/47

UNI

O
&
2
a
7]
o
[* 9

Induction - Example 2

UNI

O
&
2
a
7]
o
[* 9

Induction step: (d:=d+1):
Idea: Write down right-hand formula and try to get A(d)
and 5(d) out of it

A(d) < B(d) = A(d+1) < B(d+1)
d+1

Z (i'2d+1fi> < pd+1+1

i=1
d+1 .
2; (/-zd ') < 2.pd+

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 37/47

Induction - Example 2

Induction step: (d:=d+1):

Q
I

2. 1(i-20"') < 2.0+

—_

Q

2. 3 (i.zd—") < 2.5(d)

l\)
.MQ

1}
—_

(/ od-)+2-(d+1)-2d*(d”) < 2.5(d)
2-A(d)+(d+1) < 2-B(d)
Problem: does not work but claim still holds

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd

UNI

O
&
2
a
7]
o
[* 9

38/47

Induction - Example 2

UNI

O
&
2
a
7]
o
[* 9

Working proof:
Show a little bit stronger claim

™e

1]
_

(i.2d—i> < 20+ _ g o < pd+l

Advantage: results in a stronger induction assumption
= exercise

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 39/47

UNI

O
&
2
a
7]
o
[* 9

Runtime of the other operations:
n x taking out maximum (each constant cost)
Maximum of d steps for each of n x heap repair
= Depth d of initial heap is < 1 +log,n
20-1<n = d—1<log,n = d<1+log,n
Recall: the depth and number of elements is decreasing
Hence: T(n)<n-d-C<n-(1+logy,n)-C

We can reduce this to:

T(n)<2-nlogon-C (holds for n > 2)

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 41/47

Runtime - Heapsort

Runtime costs:
Heapify: T(n)<4-n-C
Remove: T(n) <2-nlog,n-C
Total runtime: T(n) <6-nlog,n-C
Constraints:
Upper bound: Cy-nlog,n > T(n) (for n > 2)

Lower bound: Cy-nlog,n < T(n) (for n > 2)
= C¢ and C, are constant

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 42/ 47

Base of Logarithms

UNI
FREIBURG

Logarithm to different bases

log,n
log,n = o9 logyn

log,a ‘logpa

The only difference is a constant coefficient

1
logya

Examples:
logz 4 = 109194 5570 = 0.602...-3.322... =2 v

l0g19 1000 =log, 1000 olr5 =1 1000+ 15 =3 v/

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 44 /47

Runtime Example

UNI

Runtime of n log, n:
Assume we have constants C; and C, with

Ci-n-logon<T(n)<Cy-n-logon forn>2

2 x elements = only slightly larger than 2 x runtime

C = 1ns (1 simple instruction ~ 1ns)

n =220 (1 million numbers = 4MB with 4B/number)
C-n-logon=10"9s.220.20 = 21.0ms

n =230 (1 billion numbers = 4GB)
C-n-logon=10"9s.2%0.30 =325

Runtime n log, n is nearly as good as linear!

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 45/ 47

O
&
2
a
7]
o
[* 9

Further Literature

UNI

O
&
-
a
7]
o
[* 9

Course literature

[CRLO1] Thomas H. Cormen, Ronald L. Rivest, and
Charles E. Leiserson.
Introduction to Algorithms.
MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and data structures, 2008.
https://people.mpi-inf.mpg.de/~mehlhorn/
ftp/Mehlhorn-Sanders-Toolbox.pdf.

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 46 /47

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf

Further Literature

UNI

O
&
2
a
7]
o
[* 9

Mathematical Induction

[Wik] Mathematical induction
https://en.wikipedia.org/wiki/Mathematical_
induction

October 2018 Prof. Dr. Rolf Backofen — beamer-ufcd 47147

https://en.wikipedia.org/wiki/Mathematical_induction
https://en.wikipedia.org/wiki/Mathematical_induction

	Runtime Example
	Minsort

	Basic Operations
	Runtime analysis
	Minsort
	Heapsort

	Logarithms
	Appendix

