
Algorithms and Datastructures
Runtime analysis Minsort / Heapsort, Induction

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen
Bioinformatics Group / Department of Computer Science
Algorithms and Datastructures, October 2018

Structure

Runtime Example
Minsort

Basic Operations

Runtime analysis
Minsort
Heapsort

Introduction to Induction

Logarithms

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 2 / 47

Runtime analysis - Minsort

How long does the program run?
In the last lecture we had a schematic
Observation: it is going to be “disproportionately” slower
the more numbers are being sorted
How can we say more precisely what is happening?

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 4 / 47

Runtime analysis - Minsort

How can we analyze the runtime?
Ideally we have a formula which provides the runtime of
the program for a specific input
Problem: the runtime is depends on many variables,
especially:

What kind of computer the code is executed on
What is running in the background
Which compiler is used to compile the code

Abstraction 1: analyze the number of basic operations,
rather than analyzing the runtime

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 5 / 47

Basic Operations

Incomplete list of basic operations:

Arithmetic operation, for example: a + b
Assignment of variables, for example: x = y
Function call, for example: minsort(lst)

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 7 / 47

Basic Operations

Intuitive: Better: Best:

lines of code lines of machine
code

process cycles

Important:

The actual runtime has to be roughly proportional to the
number of operations.

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 8 / 47

Runtime analysis - Minsort

How many operations does Minsort need?
Abstraction 2: we calculate the upper (lower) bound,
rather than exactly counting the number of operations
Reason: runtime is approximated by number of basic
operations, but we can still infer:

Upper bound
Lower bound

Basic Assumption:
n is size of the input data (i.e. array)
T (n) number of operations for input n

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 10 / 47

Runtime analysis - Minsort

How many operations does Minsort need?
Observation: the number of operations depends only on
the size n of the array and not on the content!
Claim: there are constants C1 and C2 such that:

C1 ·n2 ≤ T (n)≤ C2 ·n2

This is called “quadratic runtime” (due to n2)

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 11 / 47

Runtime Example

number of operations

0

50

100

150

200

250

300

350

4 80 2 6 10

number of input elements n

C2 =7/2 could have
been larger or small
(exact value not
relevant)

C1=1/2 could have been
choosen smaller (not
relevant), but not larger

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 12 / 47

Runtime analysis - Minsort

We declare:
Runtime of operations: T (n)
Number of Elements: n
Constants: C1 (lower bound), C2 (upper bound)

C1 ·n2 ≤ T (n)≤ C2 ·n2

Number of operations in round i: Ti

1 2 3 12 7 4 6 10 8 15 14 5 11 9 13

Figure: Minsort at iteration i = 4. We have to check n−3 elements

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 13 / 47

Runtime analysis - Minsort

7 6 10 8 15 11 131 2 3 12 4 14 5 9

n−3 elements left

Figure: Minsort at iteration i = 4

Runtime for each
iteration:

T1 ≤ C′2 · (n−0)
T2 ≤ C′2 · (n−1)
T3 ≤ C′2 · (n−2)
T4 ≤ C′2 · (n−3)

...
Tn−1 ≤ C′2 ·2

Tn ≤ C′2 ·1

T (n) = C′2 · (T1 + · · ·+Tn)≤
n
∑
i=1

(
C′2 · i

)
October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 14 / 47

Runtime analysis - Minsort

Alternative: Analyse the Code:
def minsor t (elements) :

f o r i i n range (0 , len (elements)−1) :
minimum = i

f o r j i n range (i +1 , len (elements)) :
i f elements [j] < elements [minimum] :

minimum = j

i f minimum != i :
elements [i] , elements [minimum] = \

elements [minimum] , elements [i]

r e t u r n elements

const.
runtime

n-i-1
times n-1

times

T (n)≤
n−2
∑
i=0

n−1
∑

j=i+1
C′2 =

n−2
∑
i=0

(n− i−1) ·C′2 =
n−1
∑
i=1

(n− i) ·C′2 ≤
n
∑
i=1

i ·C′2

Remark: C′2 is cost of comparison⇒ assumed constant

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 15 / 47

Runtime analysis - Minsort

Proof of upper bound: T (n)≤ C2 ·n2

T (n) ≤
n
∑
i=1

C′2 · i

= C′2 ·
n
∑
i=1

i

⇓ Small Gauss sum

= C′2 ·
n(n+1)

2
≤ C′2 ·

n(n+n)
2 , 1≤ n

= C′2 ·
2 ·n2

2 = C′2 ·n2

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 16 / 47

Runtime analysis - Minsort

Proof of lower bound: C1 ·n2 ≤ T (n)
Like for the upper bound there exists a C1. Summation
analysis is the same, only final approximation differs

T (n) ≥
n−1
∑
i=1

C′1 · (n− i) = C′1
n−1
∑
i=1

i

≥ C′1 ·
(n−1) ·n

2 How do we get to n2?

⇓ n−1≥ n
2 for n≥ 2

≥ C′1 ·
n ·n
2 ·2 =

C′1
4 ·n

2

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 18 / 47

Runtime analysis - Minsort

Runtime Analysis:
Upper bound: T (n)≤ C′2 ·n2

Lower bound:
C′1
4 ·n

2 ≤ T (n)

Summarized:

C′1
4 ·n

2 ≤ T (n)≤ C′2 ·n2

Quadratic runtime proven:

C1 ·n2 ≤ T (n)≤ C2 ·n2

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 19 / 47

Runtime Example

The runtime is growing quadratically with the number of
elements n in the list
With constants C1 and C2 for which C1 ·n2 ≤ T (n)≤ C2 ·n2

3× elements⇒ 9× runtime
C = 1ns (1 simple instruction ≈ 1ns)
n = 106 (1 million numbers = 4MB with 4B/number)

C ·n2 = 10−9 s ·1012 = 103 s = 16.7min
n = 109 (1 billion numbers = 4GB)

C ·n2 = 10−9 s ·1018 = 109 s = 31.7 years

Quadratic runtime = “big” problems unsolvable

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 20 / 47

Runtime - Heapsort

Intuitive to extract minimum:
Minsort: to determine the minimum value we have to
iterate through all the unsorted elements.
Heapsort: the root node is always the smallest (minheap).
We only need to repair a part of the full tree after the delete
operation.

Formal:
Let T(n) be the runtime for the Heapsort algorithm with n
elements
On the next pages we will proof T (n)≤ C ·n log2n

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 22 / 47

Runtime - Heapsort

Depth of a binary tree:
Depth d: longest path
through the tree
Complete binary tree has
n = 2d −1 nodes
Example: d = 4
⇒ n = 24−1 = 15

Root

Leaves

Figure: Binary tree with 15 nodes

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 23 / 47

Induction

Basics:
You want to show that assumption A(n) is valid ∀n ∈ N
We show induction in two steps:

1 Induction basis: we show that our assumption is valid for
one value (for example: n = 1, A(1)).

2 Induction step: we show that the assumption is valid for all
n (normally one step forward: n = n+1,A(1), . . . ,A(n)).

If both has been proven, then A(n) holds for all natural
numbers n by induction

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 25 / 47

Induction - Example 1

Claim:
A complete binary tree of depth d has v(d) = 2d −1 nodes

Induction basis: assumption holds for d = 1

Root

Figure: Tree of depth 1 has 1
node

v(1) = 21−1 = 1
⇒ correct X

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 26 / 47

Induction - Example 1

Number of nodes v(d) in a binary tree with depth d:
Induction assumption: v(d) = 2d −1
Induction basis: v(1) = 2d −1 = 21−1 = 1 X

Induction step: to show for d := d +1

Root

v(d) v(d)d
+
1

d

Figure: binary tree with subtrees

v(d +1) = 2 ·v(d) +1

= 2 ·
(
2d −1

)
+1

= 2d+1−2+1
= 2d+1−1 X

⇒ By induction: v(d) = 2d −1 ∀d ∈ N 2

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 27 / 47

Runtime - Heapsort

Heapsort has the following steps:
Initially: heapify list of n elements
Then: until all n elements are sorted

Remove root (=minimum element)
Move last leaf to root position
Repair heap by sifting

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 29 / 47

Runtime - Heapsort
Heapify

Runtime of heapify depends on depth d:

Depth 4→ 23 nodes

Depth 3→ 22 nodes

Depth 2→ 21 nodes

Depth 1→ 20 nodes

Runtime of heapify with depth of d:
No costs at depth d with 2d−1 (or less) nodes
The cost for sifting with depth 1 is at most 1C per node
In general: sifting costs are linear with path length and
number of nodes

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 30 / 47

Runtime - Heapsort
Heapify

Heapify total runtime:

Depth 4→ 23 nodes

Depth 3→ 22 nodes

Depth 2→ 21 nodes

Depth 1→ 20 nodes

Depth d→ 2d−1 nodesGenerally:

Depth Nodes Path length Costs per node Upper bound
d 2d−1 0 ≤ C ·0 ≤ C ·1

d−1 2d−2 1 ≤ C ·1 Standard≤ C ·2
d−2 2d−3 2 ≤ C ·2 Equation≤ C ·3
d−3 2d−4 3 ≤ C ·3 ≤ C ·4

In total: T (d)≤
d
∑
i=1

(
C · (i−1) ·2d−i

)
≤

d
∑
i=1

(
C · i ·2d−i

)
October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 31 / 47

Runtime - Heapsort
Heapify

Heapify total runtime:

T (d)≤C ·
d
∑
i=1

(
i ·2d−i

)
≤ C ·2d+1

︸ ︷︷ ︸
See next slides

Hence: Resulting costs for heapify:

T (d)≤ C ·2d+1

However: We want costs in relation to n

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 32 / 47

Runtime - Heapsort
Heapify

Heapify total runtime:

T (d)≤ C ·2d+1

A binary tree of depth d has 2d−1 ≤ n nodes

Why?

2d−1−1 nodes in full tree
till layer d−1
At least 1 node in layer d

Equation multiplied by 22
⇒ 2d−1 ·22 ≤ 22 ·n
Cost for heapify:
⇒ T (n)≤ C ·4 ·n

Figure: Partial binary tree

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 33 / 47

Induction - Example 2

We want to proof (induction assumption):

d
∑
i=1

(
i ·2d−i

)
︸ ︷︷ ︸≤ 2d+1

︸︷︷︸
A(d)≤ B(d)

We denote the left side with A, the right side with B

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 35 / 47

Induction - Example 2

Induction basis: d := 1:

A(d)≤ B(d)
d
∑
i=1

(
i ·2d−i

)
≤ 2d+1

1
∑
i=1

(
i ·21−i

)
≤ 21+1

20 ≤ 22 X

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 36 / 47

Induction - Example 2

Induction step: (d := d +1):
Idea: Write down right-hand formula and try to get A(d)
and B(d) out of it

A(d)≤ B(d) ⇒ A(d +1)≤ B(d +1)
d+1
∑
i=1

(
i ·2d+1−i

)
≤ 2d+1+1

2 ·
d+1
∑
i=1

(
i ·2d−i

)
≤ 2 ·2d+1

...

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 37 / 47

Induction - Example 2

Induction step: (d := d +1):

...

2 ·
d+1
∑
i=1

(
i ·2d−i

)
≤ 2 ·2d+1

2 ·
d+1
∑
i=1

(
i ·2d−i

)
≤ 2 ·B(d)

2 ·
d
∑
i=1

(
i ·2d−i

)
+2 · (d +1) ·2d−(d+1) ≤ 2 ·B(d)

2 ·A(d)+(d +1)≤ 2 ·B(d)

Problem: does not work but claim still holds

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 38 / 47

Induction - Example 2

Working proof:
Show a little bit stronger claim

d
∑
i=1

(
i ·2d−i

)
≤ 2d+1−d−2 ≤ 2d+1

Advantage: results in a stronger induction assumption
⇒ exercise

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 39 / 47

Runtime of the other operations:
n × taking out maximum (each constant cost)
Maximum of d steps for each of n × heap repair
⇒ Depth d of initial heap is ≤ 1+ log2n

2d−1 ≤ n ⇒ d−1≤ log2n ⇒ d ≤ 1+ log2n

Recall: the depth and number of elements is decreasing
Hence: T (n)≤ n ·d ·C ≤ n · (1+ log2n) ·C
We can reduce this to:

T (n)≤ 2 ·n log2n ·C (holds for n > 2)

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 41 / 47

Runtime - Heapsort

Runtime costs:
Heapify: T (n)≤ 4 ·n ·C
Remove: T (n)≤ 2 ·n log2n ·C
Total runtime: T (n)≤ 6 ·n log2n ·C
Constraints:

Upper bound: C2 ·n log2n≥ T (n) (for n≥ 2)
Lower bound: C1 ·n log2n≤ T (n) (for n≥ 2)
⇒ C1 and C2 are constant

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 42 / 47

Base of Logarithms

Logarithm to different bases:

loga n = logb n
logb a = logb n · 1

logb a

The only difference is a constant coefficient 1
logb a

Examples:
log24 = log104 · 1

log2 10
= 0.602 . . . ·3.322 . . . = 2 X

log101000 = loge1000 · 1
loge 10

= ln1000 · 1
ln10 = 3 X

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 44 / 47

Runtime Example

Runtime of n log2n:
Assume we have constants C1 and C2 with

C1 ·n · log2n≤ T (n)≤ C2 ·n · log2n for n≥ 2

2× elements⇒ only slightly larger than 2× runtime
C = 1ns (1 simple instruction ≈ 1ns)
n = 220 (1 million numbers = 4MB with 4B/number)

C ·n · log2n = 10−9 s ·220 ·20 = 21.0ms
n = 230 (1 billion numbers = 4GB)

C ·n · log2n = 10−9 s ·230 ·30 = 32s

Runtime n log2n is nearly as good as linear!

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 45 / 47

Further Literature

Course literature
[CRL01] Thomas H. Cormen, Ronald L. Rivest, and

Charles E. Leiserson.
Introduction to Algorithms.
MIT Press, Cambridge, Mass, 2001.

[MS08] Kurt Mehlhorn and Peter Sanders.
Algorithms and data structures, 2008.
https://people.mpi-inf.mpg.de/~mehlhorn/
ftp/Mehlhorn-Sanders-Toolbox.pdf.

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 46 / 47

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf

Further Literature

Mathematical Induction
[Wik] Mathematical induction

https://en.wikipedia.org/wiki/Mathematical_
induction

October 2018 Prof. Dr. Rolf Backofen – beamer-ufcd 47 / 47

https://en.wikipedia.org/wiki/Mathematical_induction
https://en.wikipedia.org/wiki/Mathematical_induction

	Runtime Example
	Minsort

	Basic Operations
	Runtime analysis
	Minsort
	Heapsort

	Logarithms
	Appendix

