Algorithms and Data Structures
Open Addressing, Priority Queue

Prof. Dr. Rolf Backofen
Bioinformatics Group / Department of Computer Science
Algorithms and Data Structures, November 2018
Structure

Hashing
- Recapitulation
- Treatment of hash collisions
- Open Addressing
- Summary

Priority Queue
- Introduction
Hashing:

- No hash function is good for all key sets!
 - This cannot work, because a big universe is mapped onto a small set: \(|U| > m\)

- For random key sets also simple hash functions work, e.g.
 \[h(x) = x \mod m \]
 - Then the random keys make sure that it is distributed evenly

- To find a good hash function for every key set, universal hashing is needed
 - Then however, for a fixed set of keys not every hash function is suitable, but only some
Rehashing:

- It is possible to get bad hash functions with universal hashing, but it is unlikely.
- This is determinable by monitoring the maximum bucket size.
- If a pre-defined level is exceeded, then a rehash is performed.

How to rehash?

- New hash table with a new random hash function.
- Copy elements into the new table.
 - Expensive but does not happen often.
 - Therefore the average cost is low.
 - Look at amortized analysis in the next lecture.
Buckets as linked list:

- Each bucket is a linked list
- Colliding keys are inserted into the linked list of a bucket, either sorted or appended at the end

Operations in $O(1)$ are possible if a suitable table size and hash function is selected

- Worst case $O(n)$, e.g. table size of 1
- Dynamic number of elements is possible
- For colliding keys we choose a new free entry
- Static, fixed number of elements
- The **probe sequence** determines for each key, in which sequence all hash table entries are searched for a free bucket
 - If an entry is already occupied, then iteratively the following entry is checked. If a free entry is found the element is inserted
 - If element is not found at the corresponding table entry, even if the entry is occupied, then probing has to be performed until the element or a free entry has been found
Definitions:

$h(s)$ Hash function for key s

g(s,j) Probing function for key s with overflow positions $j \in \{0, \ldots, m - 1\}$ e.g. $g(s,j) = j$

The probe sequence is calculated by

$$h(s,j) = (h(s) - g(s,j)) \mod m \in \{0, \ldots, m - 1\}$$
```python
def insert(s, value):
    j = 0

    while t[(h(s) - g(s, j)) mod m] \ is not None:
        j += 1

    t[(h(s) - g(s, j)) mod m] \ = (s, value)
```
def lookup(s):
 j = 0

 while t[(h(s) - g(s, j)) mod m] \n is not None:
 if t[(h(s) - g(s, j)) mod m][0] != s:
 j += 1
 if t[(h(s) - g(s, j)) mod m][0] == s:
 return t[(h(s) - g(s, j)) mod m]
 return None
Hashing
Open Addressing - Linear Probing

Figure: Linear probe sequence

Check the element with lower index: \(g(s,j) := j \)
\[\Rightarrow \text{Hash function: } h(s,j) = (h(s) - j) \mod m \]

This leads to the following probe sequence

\[h(s), h(s) - 1, h(s) - 2, \ldots, 0, m - 1, m - 2, \ldots, h(s) + 1 \]

clipping
Hashing
Open Addressing - Linear Probing

Can result in primary clustering
Dealing with a hash collision will result in a higher probability of hash collisions in close entries

Figure: Linear probe sequence
Hashing
Open Addressing - Linear Probing

Example:
- Keys: \{12, 53, 5, 15, 2, 19\}
- Hash function: \(h(s, j) = (s \mod 7 - j) \mod 7 \)

- \(t . \text{insert}(12, "A"), h(12, 0) = 5 \)
 \[
 \begin{array}{cccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 \hline
 & & & & & 12, A \\
 \end{array}
 \]

- \(t . \text{insert}(53, "B"), h(53, 0) = 4 \)
 \[
 \begin{array}{cccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 \hline
 & & 53, B & & 12, A \\
 \end{array}
 \]

Figure: Probe/Insertion sequence on a hash map
Example:

- Hash function: $h(s, j) = (s \mod 7 - j) \mod 7$

- t.insert(5, "C"), $h(5, 0) = 5$, $h(5, 1) = 4$, $h(5, 2) = 3$

- t.insert(15, "D"), $h(15, 0) = 1$

Figure: Probe/Insertion sequence on a hash map
Hashing
Open Addressing - Linear Probing

Example:

- Hash function: \(h(s,j) = (s \mod 7 - j) \mod 7 \)

- \(t \). insert (2, "E"), \(h(2,0) = 2 \)

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
& 15, D & 2, E & 5, C & 53, B & 12, A \\
\end{array}
\]

- \(t \). insert (19, "F"), \(h(19,0) = 5, h(19,1) = 4, h(19,2) = 3, h(19,3) = 2, h(19,4) = 1, h(19,5) = 0 \)

\[
\begin{array}{cccccccc}
19, F & 15, D & 2, E & 5, C & 53, B & 12, A \\
\end{array}
\]

Figure: Probe/Insertion sequence on a hash map
Squared probing:
- Motivation: avoid local clustering

\[g(s,j) := (-1)^j \left\lfloor \frac{j}{2} \right\rfloor^2 \]

This leads to the following probe sequence

\[h(s), h(s) + 1, h(s) - 1, h(s) + 4, h(s) - 4, h(s) + 9, h(s) - 9, \ldots \]
Squared probing:

\[g(s, j) := (-1)^j \left(\frac{j}{2} \right)^2 \]

- If \(m \) is a prime number for which \(m = 4 \cdot k + 3 \) then the probe sequence is a permutation of the indices of the hash tables.
- Alternatively: \(h(s, j) := (h(s) - c_1 \cdot j + c_2 \cdot j^2) \mod m \)
- Problem of secondary clustering:
 No local clustering anymore, but keys with same hash value have similar probe sequence.
Uniform Probing:

- Motivation: so far function $g(s,j)$ uses only the step counter j for linear and squared probing
 \Rightarrow The probe sequence is independent of the key s

- Uniform probing computes the sequence $g(s,j)$ of permutations of all possible indices dependent on key s

- **Advantage:** prevents clustering because different keys with the same hash value do not produce the same probe sequence

- **Disadvantage:** hard to implement
Double Hashing:

Motivation: consider key s in probe sequence
- Use two independent hash functions $h_1(s), h_2(s)$
- Hash function: $h(s, j) = (h_1(s) + j \cdot h_2(s)) \mod m$

Figure: double hashing probe sequence
Double Hashing:

- Hash function: \(h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m \)
- Probe sequence:
 \[h_1(s), \quad h_1(s)+h_2(s), \quad h_1(s)+2 \cdot h_2(s), \quad h_1(s)+3 \cdot h_2(s), \ldots \]

- Works well in practical use
- This method is an approximation of uniform probing
Example:

\[h_1(s) = s \mod 7 \]
\[h_2(s) = (s \mod 5) + 1 \]
\[h(s, j) = h_1(s) + j \cdot h_2(s) \mod 7 \]

Table: comparing both hash functions

<table>
<thead>
<tr>
<th>s</th>
<th>10</th>
<th>19</th>
<th>31</th>
<th>22</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1(s))</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(h_2(s))</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

- The efficiency of double hashing is dependent on \(h_1(s) \neq h_2(s)\)
Double hashing by Brent:

- **Motivation:**
 Because different keys have different probe sequences, the sequence of the insertions has impact on efficiency of a successful search.
Example:

- The key s_1 is inserted at position $p_1 = h(s_1, 0)$
- The hash function for s_2 also results in $p_2 = h(s_2, 0) = p_1$
- The locations $h(s_2, j), j \in \{1, \ldots, n\}$ are also occupied
- If we insert s_2 at position $h(s_2, n+1)$ the search will be inefficient
Hashing
Open Addressing - Double Hashing - Optimization

Figure: double hashing by Brent

- Reversed sequence of keys would have been better
- **Brent’s idea:**
 - Test if location $h(s_1, 1)$ is free
 - If yes, move s_1 from $h(s_1, 0)$ to $h(s_1, 1)$ and insert s_2 at $h(s_2, 0)$
Idea:

- Motivation: colliding elements are inserted in the hash table sorted.
- Therefore, in case of an unsuccessful search of elements in combination with linear probing or double hashing, aborting is possible earlier because single probing steps have a fixed length.

Implementation:

- Compare both keys if a collision occurs.
- Insert the smaller key at p_1.
- Search a position based on the diversion order for the bigger key.
Example:

- The key 12 is saved at position $p_1 = h(12, 0)$
- We insert the key 5 into the hash map
- We assume $h(5, 0)$ results in location p_1
- Because 5 < 12 we insert the key 5 at position p_1
- For the key 12 we iterate through the sequence

$$h(12, 1), h(12, 2), h(12, 3), \ldots$$
Motivation:

- Having similar length of probe sequences for all elements. Total costs stay the same, but they are distributed evenly. Results in approximately similar search times for all elements.

Implementation:

- If two keys s_1, s_2 collide ($p_1 = h(s_1, j_1) = h(s_2, j_2)$) we compare the length of the sequence (j_1 or j_2).
- The key with the bigger search sequence is inserted at p_1. The other key is assigned to a new location based on the sequence.
Example:

- The key 12 is saved at position $p_1 = h(12, 7)$
- We insert the key 5 into the hash map
- We assume $h(5, 0)$ results in location p_1
- Because $j_1 < j_2$ (0 < 7) key 12 stays at position p_1
- For key 5 we iterate through the sequence

$$h(5, 1), h(5, 2), h(5, 3), \ldots$$
Problem:

- The key s_1 is inserted at position p_1
- The key s_2 returns the same hash value, but is inserted at position p_2 because of the probing order
- If s_1 is removed, it is impossible to find s_2

Solution:

- **Remove**: elements are marked as removed, but not deleted
- **Inserting**: elements marked as removed will be overwritten
Bucket as linked list: (dynamic, number of elements variable)
- Save colliding elements as linked list

Open hashing: (static, number of elements fixed)
- Determine a probe sequence, permutation of all hash values
- Linear, quadratic probing:
 - Easy to implement
 - Raises the probability of collisions because probing order does not depend on the key
Open hashing: (static, number of elements fixed)
- Uniform probing, double hashing:
 - Different probing orders for different keys
 - Avoids clustering of elements

Improving efficiency: (Brent, Ordered Hashing)
- Improve search efficiency by sorting colliding insertions
 - Abortion of unsuccessfull search
 - Search sequence length balancing
Hashing:

- Efficiency of dictionary operations:
 - Insert: $O(1)$…$O(n)$
 - Search: $O(1)$…$O(n)$
 - Remove: $O(1)$…$O(n)$

- Direct access onto all elements in a hash table
- Using a hash function to find the position (hash value) in the hash table
- Hash function, size of the hash table and strategy to avoid hash collisions all influence the efficiency of the data structure
Definition:
- A priority queue saves a set of elements
- Each element contains a key and a value like a map
- There is a total order (like \leq) defined on the keys
Definition:

- The priority queue supports the following operations:
 - `insert(key, value)`: inserts a new element into the queue
 - `getMin()`: returns the element with the smallest key
 - `deleteMin()`: removes the element with the smallest key

- Sometimes additional operations are defined:
 - `changeKey(item, key)`: changes the key of the element
 - `remove(item)`: removes the element from the queue
Priority Queue

Introduction

Special features:
- Multiple elements with the same key
 - No problem and for many applications necessary
 - If there is more than one element with the smallest key
 getMin(): returns just one of the possible elements
deletemin(): deletes the element returned by getMin

- Argument of changeKey and remove operations
 - There is no quick access to an element in the queue
 - That is why insert and getMin return a reference (handle, accessor object)
 - changeKey and remove take this reference as argument
 - Therefore each element has to store its current position in the heap.
from queue import PriorityQueue

q = PriorityQueue()

e1 = (5, "A") # element with priority 5
q.put(e1); # insert element e1

remove and return the lowest item
e2 = q.get()
Example 1:

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)

$L_1: \begin{array}{cccc} 3 & 5 & 8 & 12 \end{array}$ \hspace{1cm} $L_2: \begin{array}{cccc} 4 & 5 & 6 & 7 \end{array}$ \hspace{1cm} $L_3: \begin{array}{cccc} 1 & 10 & 11 & 24 \end{array}$

$\Rightarrow R: \begin{array}{cccccccc} 1 & 3 & 4 & 5 & 5 & 6 & 7 & 8 & 10 \end{array}$

Figure: 3-way merge
Example 1:

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)
- Runtime: N = length of resulting list
 - Trivial: $\Theta(N \cdot k)$, minimum calculation $\Theta(k)$
 - Priority queue: $\Theta(N \cdot \log k)$, minimum calculation $\Theta(\log k)$

Example 2:

- For example Dijkstra’s algorithm for computing the shortest path (following lecture)
- Among other applications it can be used for sorting
Priority Queue
Implementation

Idea:
- Save elements as tuples in a binary heap
- Summary from lecture 1 (*HeapSort*):
 - Nearly complete binary tree
 - **Heap condition**: The key of each node \leq the keys of the children

![Figure: heap with 11 nodes]
Priority Queue
Implementation

Storing a binary heap:

- Number nodes from top to bottom and left to right starting with 0 and store entries in array
- Children of node i are the nodes $2i+1$ and $2i+2$
- Parent node of node i is $\text{floor}((i - 1)/2)$
Inserting an element: \texttt{insert(key, item)}

- Append the element at the end of the array
- The \textit{heap condition} may be violated, but only at the last index
- Repair \textit{heap condition} \Rightarrow We will see later how to do this
Returning the minimum: `getMin()`

- Else return the first element
- If the heap is empty return `None`
Removing the minimum: \texttt{deleteMin()}

- Deleting the element with the lowest key
- Swap the last element with the first element and shrink the heap by one
- The heap condition may be violated, but only at the first index
- Repair heap condition
Changing the key (priority): `changeKey(item, key)`

- The element (queue item) is given as argument
- Replace the key of the element
- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition

![Diagram](image_url)
Changing the key (priority): $\text{changeKey(item, key)}$

- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition
Removing an element: `remove(item)`

- The element (queue item) is given as argument
- Replace the element with the last element and shrink the heap by one
- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition
Repairing after modifying operations:

- The heap condition can be violated after using `insert`, `deleteMin`, `changeKey`, `remove`, but only at one known position with index i.
- Heap conditions can be violated in two directions:
 - Downwards: the key at index i is not \leq than the value of its children.
 - Upwards: the key at index i is not \geq than the value of its parent.
- We need two repair methods: `repairHeapUp`, `repairHeapDown`.
repairHeapDown:

- Sift the element until the heap condition is valid
 - Change node with child, which has the lower key of both children
 - If the heap condition is violated repeat for the child node

Figure: repairing the heap downwards
repairHeapDown:

- **Sift** the element until the **heap condition** is valid
 - Change node with child, which has the lower key of both children
 - If the **heap condition** is violated repeat for the child node

Figure: repairing the heap downwards
repairHeapUp:

- Change node with parent
- If the heap condition is violated repeat for parent node

Figure: repairing the heap upwards
Priority Queue
Implementation - Reparing the Heap

repairHeapUp:
- Change node with parent
- If the heap condition is violated repeat for parent node

Figure: repairing the heap upwards
Index of a priority queue item:

- **Attention**: for `changeKey` and `remove` the item has to “know” where it is located in the heap
- Remember for `repairHeapUp` and `repairHeapDown`: update the index if moving an heap element
class PriorityQueueItem:

 '''Provides a handle for a queue item.
 This handle can be used to remove or update the queue item.'''

 def __init__(self, key, value, index):
 self.key = key
 self.value = value
 self.index = index
Summary lecture 1:

- A full binary tree with n elements has a depth of $O(\log n)$
- The maximum distance from the root to a leaf can be $O(\log n)$ elements
- Repairing the heap upwards and downwards: We have only one path to traverse: $O(\log n)$

Runtime for methods

- `insert`, `deleteMin`, `changeKey`, `remove`: we have to repair the heap: $O(\log n)$
- `getMin`: return the element at index 0: $O(1)$
Priority Queue

Complexity

Improvements (Fibonacci heaps):
- `getMin`, `insert` and `decreaseKey` in amortized time of $O(1)$
- `deleteMin` in amortized time $O(\log n)$

Practical experience:
- The binary heap is simpler: costs for managing the structure are low
- The difference is negligible if the number of elements is relatively small
- Example:
 - For $n = 2^{10} \approx 1,000$, the depth $\log_2 n$ is only 10
 - For $n = 2^{20} \approx 1,000,000$, the depth $\log_2 n$ is only 20
Further Literature

Course literature

Priority Queue - Implementations / API

[Cpp] C++ - priority_queue

[Jav] Java - PriorityQueue
https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html

[Pyt] Python - PriorityQueue
https://docs.python.org/3/library/queue.html#queue.PriorityQueue