Algorithms and Data Structures
Shortest Path, Dijkstra Algorithm
Structure

Graphs

Dijkstra Algorithm
Structure

Graphs

Dijkstra Algorithm
For a graph $G = (V, E)$:

- A path of G is a sequence of edges $u_1, u_2, \ldots, u_i \in V$ with
 - Undirected graph: $\{u_1, u_2\}, \{u_2, u_3\}, \ldots, \{u_{i-1}, u_i\} \in E$
 - Directed graph: $(u_1, u_2), (u_2, u_3), \ldots, (u_{i-1}, u_i) \in E$

- The length of a path is
 - Without weights: number of edges taken
 - With weights: sum of weights of edges taken
For a graph $G = (V, E)$:

- The shortest path between two vertices u, v is the path $P = (u, \ldots, v)$ with the shortest length $d(u, v)$ or lowest costs.
- The diameter of a graph is the longest shortest path.
Graphs

Dijkstra Algorithm
Wanted: Shortest path from M to all other points
Place pearls on crossings and clamp strings between them
Dijkstra Algorithm
Shortest Path without Computer

Figure: Based on OpenStreetMaps; CC BY-SA 2.0

- Take the net and pull it slowly upwards until fully lifted

- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Dijkstra Algorithm
Shortest Path without Computer

Figure: Based on OpenStreetMaps; CC BY-SA 2.0
- Take the net and pull it slowly upwards until fully lifted
- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Dijkstra Algorithm
Shortest Path without Computer

Figure: Based on OpenStreetMaps; CC BY-SA 2.0

- Take the net and pull it slowly upwards until fully lifted
- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Dijkstra Algorithm
Shortest Path without Computer

Figure: Based on OpenStreetMaps; CC BY-SA 2.0

- Take the net and pull it slowly upwards until fully lifted
- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Dijkstra Algorithm
Shortest Path without Computer

Figure: Based on OpenStreetMaps; CC BY-SA 2.0

- Take the net and pull it slowly upwards until fully lifted
- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Figure: Based on OpenStreetMaps; CC BY-SA 2.0

- Take the net and pull it slowly upwards until fully lifted
- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Dijkstra Algorithm
Shortest Path without Computer

Figure: Based on OpenStreetMaps; CC BY-SA 2.0

- Take the net and pull it slowly upwards until fully lifted
- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Dijkstra Algorithm
Shortest Path without Computer

Figure: Based on OpenStreetMaps; CC BY-SA 2.0

- Take the net and pull it slowly upwards until fully lifted
- Each node (pearl) now has a specific height
- The distance to M is exactly the shortest path
Let r be the shortest path from s to t

For each node u on path r the path from u to t is the shortest path

Proof:

If there was a shorter path from s to u then we could choose this path to get faster to t

Then r would not be the shortest path
This is also correct for all sub paths on r

If the shortest path from s to t passes u_1 and u_2 then the sub path (u_1, u_2) is the shortest path from u_1 to u_2
If we know the shortest path form \(s \) to the preceding nodes of \(t \) \((v_1, v_2, v_3)\) we can determine the shortest path to \(t \)
Idea:
- Attach the cost of the shortest path to each node
- Let the information travel over the edges (message passing)
- In which order should we process the nodes?
Dijkstra Algorithm

Inventor:

- Edsger Dijkstra (1930 - 2002)
- Computer scientist from Netherlands
- Won Turing-Award as one of few Europeans for his studies of structured programming
- Invented the Dijkstra-Algorithm in 1959

Figure: Portrait © Hamilton Richards - manuscripts of Edsger W. Dijkstra, University Texas at Austin
Dijkstra Algorithm

Example:

- Lift pearl A a little bit
- Connection to pearl B is hanging in the air
- Lift further until pearl B starts to lift at 5 m
- The shortest path to B is now known
- Lift further: The wires from C, D, E and F are now in the air
- One of the pearls C, D, E or F is the next one

Which one?
Dijkstra Algorithm

Example:
- At 11 m pearl C gets lifted
- The wire to D is now in the air
- One of the pearls D, E and F is the next one
 Which one?
- At 12 m pearl D gets lifted
 …
- How to translate this into an computer algorithm?
Dijkstra Algorithm

High level description: Three types of nodes

- **Settled:** For node u we know $\text{dist}(s, u)$
 (Pearl example: This pearl is hanging in the air)

- **Active:** For node u we know a tentative distance $\text{td}(u) \geq \text{dist}(s, u)$
 (Can be optimal but doesn’t have to)
 (Pearl example: This pearl is laying on the table but one connected wire is already in the air)

- **Unreached:** We have not reached the node yet
 (Pearl example: This preal is hanging in the air)
Dijkstra Algorithm

High level description:

- Each iteration take the active node u with the smallest $td(u)$ (The pearl getting lifted next)
- We update the state of the node u to settled (The pearl gets lifted)
- We check for each neighbor v of node u if we can reach v faster than currently possible (Check all outgoing wires from this pearl: Activate all connected pearls, update tentative distance if smaller)
- Iterate until no active nodes exist anymore
Dijkstra Algorithm

Figure: Start at u_1
Dijkstra Algorithm

Figure: Iteration 1
Dijkstra Algorithm

Figure: Iteration 2
Dijkstra Algorithm

Figure: Iteration 3
Dijkstra Algorithm

Figure: Iteration 4
Figure: Iteration 5
Dijkstra Algorithm

Figure: Iteration 6
Proof:

- **Assumption 1**: All edges have a positive length
- **Assumption 2**: Each node has a unique distance \(\text{dist}(s, u) \) to the start \(s \)

(This was not the case on the previous slides)

This results in an easy and intuitive proof. It is possible to show this without assumption 2. See references if interested

- With assumption 2 there exists a sorting \(u_1, u_2, \ldots \) with that:

\[
\text{dist}(s, u_1) < \text{dist}(s, u_2) < \text{dist}(s, u_3) < \ldots
\]
Proof:

- With **assumption 2** there exists a sorting u_1, u_2, ... with that:
 \[
 \text{dist}(s, u_1) < \text{dist}(s, u_2) < \text{dist}(s, u_3) < \ldots
 \]

- We want to show that the *Dijkstra* algorithm finds the shortest path for each node u_i so that $td(u_i) = \text{dist}(s, u_i)$ holds.

- Additionally we show that each node gets solved in order of the distance: Node u_i gets solved in iteration i

 u_1, u_2, u_3, \ldots
Dijkstra Algorithm

Proof

To show: Node \(u_i \) gets solved in round \(i \)

1. Node \(u_i \) contains the correct distance (\(\text{td}(u_i) = \text{dist}(s, u_i) \)) and is active

2. Node \(u_i \) has the smallest value for \(\text{td}(u_i) \) and gets selected by the algorithm

Induction start:

1. Only the start node \(s = u_1 \) is active and \(\text{td}(s) = 0 \)
 - Node \(u_1 \) gets solved and \(\text{td}(u_1) = \text{dist}(s, u_1) = 0 \)

2. Only the start node \(u_1 \) is active
Induction step: \(i = i + 1 \)

To show: Node \(u_{i+1} \) contains the correct distance \((td(u_{i+1}) = \text{dist}(s,u_{i+1}))\) and is active

- On the shortest path from \(s \) to \(u_{i+1} \) is a preceding node that:

\[
\text{dist}(s,u_{i+1}) = \text{dist}(s,v) + c(v,u_{i+1})
\]

\((c(v,u_{i+1}) \) are the costs of the edge)

- Hence \(\text{dist}(s,v) < \text{dist}(s,u_{i+1}) \) because \(c > 0 \) (\(c = \) cost of edge)

- Because \(u_{i+1} \) is currently settled, the node \(v \) is one of the preceding nodes \(u_1, \ldots, u_i \), hence \(v = u_j \) with \(0 \leq j \leq i \).
Preceding node of u_6 is $v = u_3$
In round 3 $td(u_6) = 2 + 4 = 6$ was already solved
To show: Node u_i contains the correct distance $\text{td}(u_i) = \text{dist}(s, u_i)$ and is active

- With **induction assumption**: v already contains the correct distance which was evaluated in round j (edge from v to u_{i+1}) and is stored in $\text{td}(u_{i+1})$
- u_{i+1} is active because the preceding node was solved
To show: Node u_{i+1} has the smallest value for $td(u_{i+1})$ and gets selected by the algorithm

- All nodes with smaller $dist$ are already solved
- All other nodes u_k with $k > i + 1$ have a greater $dist(s, u_k)$ and with that the $td(u_k)$ is greater or equal

$\Rightarrow u_{i+1}$ is the node with the smallest td and gets selected by the algorithm
Dijkstra Algorithm
Implementation

Implementation:
- We have to manage a set of active nodes
- We start with only the start node in our set
- At the start of each iteration we need the node u with the smallest $td(u)$

How to implement this?
Dijkstra Algorithm
Implementation

Implementation:

- Using a priority queue with $td(u)$ as keys
- The following problem occurs:
 - The tentative distance of an active node might change multiple times before it is settled
 - We have to change the key in our priority queue without removing the entry

Limitations:

- Often only insert, getMin and deleteMin are implemented
 - We only have access to the first element and not any desired one
Alternative:

- If a node reoccurs with a smaller \textit{dist} we insert the element one more time into the \textit{priority queue} (We do nothing if the distance is greater or equal)
- We do not remove the old entry
- The node always gets solved with the smallest distance because of the \textit{smaller key}
- If a settled node reoccurs with a higher \textit{dist} we remove it and do simply \textit{nothing}
Dijkstra Algorithm
Implementation - Example

priority queue
Dijkstra Algorithm
Implementation - Example

Dijkstra's Algorithm

Start node: 0
Active nodes: u1, u2, u3, u4
Tentative nodes: u1, u2, u3, u4
Priority queue:

1. u1
2. u2
3. u3
4. u4

Distance:

- u1: 0
- u2: 2
- u3: 5
- u4: 7

Active:

- u1
- u2
- u3
- u4

Tentative:

- u1
- u2
- u3
- u4

Priority queue:

- (u1, 0)
- (u2, 2)
- (u3, 5)
- (u4, 7)

Solved:

- u1
- u2
- u3
- u4
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

1
0

start
tentative
distance
active

priority queue

(u1, 0)
(u2, 2)
(u3, 5)
(u4, 7)

solved #1
solved #2
solved #3
solved #4
ignored #5
ignored #6
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

1
0
start
tentative distance
active

priority queue
(u2, 2)
(u3, 5)
(u4, 7)
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

1

0

start

tentative distance

active

2

2

priority queue

(u2, 2) → solved #2
(u3, 5)
(u4, 7)
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

1
0
start

priority queue
(u2, 2) → solved #2
(u3, 5)
(u4, 7)
(u3, 3)

tentative distance

active

2
2

3
(u4, 5)
5
solved #4

4
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

1
0
start

2
2
 prioritize queue

3
(u2, 2) → solved #2
(u3, 5)
(u4, 7)

3
(u4, 5)

solved #3

ignored #6

priority queue

tentative distance

active

January 2019
Prof. Dr. Rolf Backofen – Bioinformatics - University Freiburg - Germany

29 / 46
Dijkstra Algorithm
Implementation - Example

solved node:
distance/round

1
0

start
tentative
distance
active

2

priority queue
(u2, 2) → solved #2
(u3, 5)
(u4, 7)

3

solved #2
solved #3

(u3, 3) → solved #3
(u4, 5)

ignored #5
ignored #6
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

priority queue

start
tentative distance

active
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

priority queue
(u2, 2) → solved #2
(u3, 5) → ignored #5
(u4, 7)
(u3, 3) → solved #3
(u4, 5) → solved #4
Dijkstra Algorithm
Implementation - Example

solved node: distance/round

priority queue

(u2, 2) → solved #2
(u3, 5) → ignored #5
(u4, 7) → ignored #6
(u3, 3) → solved #3
(u4, 5) → solved #4

start

active
tentative distance

0

1

2

2

5

3

7

u1

u2

u3

u4
Graph with \(n \) nodes and \(m \) edges: \((m \geq n)\)

- Each node gets solved exactly one time
- When solving a node it’s outgoing edges are taken into account
- Each edge triggers at maximum one \texttt{insert} operation
- The number of operations on the \texttt{priority} \texttt{queue} is at maximum \(O(m) \)
- This results in a runtime of \(O(m \cdot \log m) \)
 (\(\log m\) because of at max. \(m \) elements in the priority queue)
Dijkstra Algorithm

Runtime analysis

Runtime of $O(m \cdot \log m)$:

- Because of $m \leq n^2$ we have a maximum runtime of $O(m \cdot \log n)$, because $\log n^2 = 2 \log n$

- With a complex priority queue the runtime can be reduced to $O(m + n \log n)$
 - For example with a Fibonacci heap
 - This results in a better runtime for complex graphs $m \sim n^2$
 - Complex heaps create a management overhead

⇒ In practice $m \in O(n)$ with a binary heap being faster
 (See lecture 6)
Termination criteria:

- Terminate as soon as the target node t is settled
 ... never before because tentative distance might change:

$$td(t) \geq \text{dist}(s, t)$$

- Before the node t is solved all nodes u with
 $$\text{dist}(s, u) \leq \text{dist}(s, t)$$ are settled
Dijkstra Algorithm

Additional comments

Termination criteria:

- Not only the single source single target shortest path problem is solved by the Dijkstra algorithm but also the single source all targets problem.

- This sounds wasteful but there is not a (much) better method for general graphs.

Intuitive: We only know that there is no shorter path if all nodes in the distance of $\text{dist}(s, t)$ are evaluated.
Calculate the shortest path:

- With the current implementation of the Dijkstra algorithm we only get the length of the path. How to get the path itself too?
- If we save the preceding node of the current shortest path on settling of each node we can reconstruct the path.
Dijkstra Algorithm

Figure: Start at u_1
Figure: Iteration 1
Dijkstra Algorithm

Figure: Iteration 2
Dijkstra Algorithm

Figure: Iteration 3
Dijkstra Algorithm

Figure: Iteration 4
Dijkstra Algorithm

Figure: Iteration 5
Dijkstra Algorithm

Example:
shortest path to \(u_5 \)

Figure: Iteration 6
Enhancement:

- In our proof we used the assumption that all costs are **not negative** (even > 0)
- With **negative costs** there might be **negative cycles**:

![Figure: Here no problem ...](image1)

![Figure: ... but here](image2)
Negative cycles:

- No cycle: cost of 1
- 1 cycle: cost of 0
- 2 cycles: cost of -1
- 3 cycles: cost of -2
- ...
Enhancement:

- We need a different algorithm to deal with negative edges
 - For example the **Bellman-Ford** algorithm
 - If the graph is **acyclic** we can simply use a topological sorting (with DFS) and settling the nodes in order of this sorting

- Another (not only) in artificial intelligence used variant of the Dijkstra algorithm is the **A* algorithm**

Additional information given:

\[h(u) = \text{estimated value for dist}(u, t) \]
Dijkstra algorithm:
Message passing only from solved nodes
Bellman-Ford algorithm:
Message passing from all nodes until the path lengths are stable
Application example:

- Route planner for car trips (exercise sheet)
- Route planner for bus / train connections

What could the graph look like?
Space-time graph:
Dijkstra Algorithm
Application in image processing

Figure: Neurons under fluorescence microscope

- **Task:** Measure length of axons (connections of neurons)
- Demo with ImageJ plugin NeuronJ

 http://www.imagescience.org/meijering/software/neuronj/
Dijkstra Algorithm
Application: Trace axons

- Image as graph: Each pixel is a node
- Implicit edges: Each pixel has an edge to it’s 8 neighbours (no need to save the edges)
- Costs for nodes (not edges): bright pixels are cheap, dark pixels are costly
Further Literature

General

Further Literature

- Dijkstra’s algorithm
 - [Wik] Dijkstra’s algorithm
 https://en.wikipedia.org/wiki/Dijkstra’s_algorithm

- Shortest path problem
 - [Wik] Shortest path problem