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Remark: For this exercise, watch the tenth video lecture.

Exercise 1: Mergesort

(a) Give the pseudo code of an algorithm mergesort to sort a given array A of size n that has runtime
O(n log n). It should implement the following rough algorithm description.

Divide the array in the “middle” and sort the left and right part recursively. Then merge the
resulting two sorted subarrays into a sorted array.

You may utilize the procedure merge defined for an earlier exercise as subprocedure in mergesort.

(b) Prove the running time of your implementation of mergesort.

Sample Solution

(a) Algorithm 1 mergesort(A[`, r])

if ` = r then return . base case, subarray A[`, r] has just one element, i.e., is sorted

m← b `+r
2 c . the “middle” index

mergesort(A[m+1, r]) . sort right half of A[`, r]
mergesort(A[`,m]) . sort left half of A[`, r]
merge(A[`,m], A[m+1, r]) . merge sorted subarrays A[`,m], A[m+1, r] into A[`, r]

A call of mergesort(A[0, n−1]) sorts A.

(b) The running time of mergesort on a (sub-)array of size n is the time for merging (which is
O(“size of subarray”) = O(n), c.f., Exercise Sheet 4), plus the running time of the two recursive
calls of mergesort on arrays of size at most dn2 e. We end up with the following recursion:

T (n) = 2 · T (dn2 e) +O(n)

This solves to O(n log n) running time using the Master Theorem.

Exercise 2: Heaps

A (min-)heap is a binary tree (a rooted tree where each node has at most two children) that stores
keys in its nodes. The heap condition is defined as follows. For each node, all keys in the left and
right subtree are at least as large as the key of the node they are attached to. We can store a heap in
an array layer by layer, as exemplified in the following figure:
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(a) Insert Operation. To insert an element, add it to the first free leaf position of the tree, which
is the first free position in a layer of the tree that is not yet complete or the first free entry of
the array if the heap is represented as such. Then swap the position of the current key with its
parent, as long as said parent has a bigger key or there is no parent any more (“sift up”).

Start with an empty heap and draw the current status (as a tree) after inserting the following keys
(one tree for each inserted key): 7,8,4,9,3,5,2,6. Finally, give the heap in array representation.

(b) Delete Min Operation. First return the key in the root, then replace it with the key of the last
element in the heap (the rightmost key in the lowest layer). Then repair the heap condition from
the root down (“sift down”) as follows. While the current node has children with smaller keys,
swap positions with the smaller child.

Delete the minimum three times in the tree resulting from part (a), and draw the state of the
heap after each operation (as a tree or as array).

(c) Heapify Operation. The heapify operation takes a binary tree (which can also be represented as
an array), and rearranges the tree to establish the heap condition. The procedure can be defined
recursively as follows. Consider the current node v (initially the root of the tree). Call the heapify
procedure recursively on the left and then the right child to make valid heaps out of the left and
right subtrees of v. Then conduct a sift down operation on v (as described in part (b)).

Consider the tree represented by the array A = [7, 6, 5, 4, 3, 2, 1]. Conduct heapify on A and draw
the state of A (as array or tree) after each recursive heapify.
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Exercise 3: Binary Search Trees

Consider the following binary search tree
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(a) Give all sequences of insert(key) operations that generate the tree.

(b) Draw the tree after each of operation of the following sequence: insert(6), insert(5), insert(11),
insert(13), remove(3), remove(8).

Sample Solution

(a) (i) insert(8),insert(3), insert(12), insert(10)

(ii) insert(8),insert(12), insert(3), insert(10)

(iii) insert(8),insert(12), insert(10), insert(3)



(b) After insert(6):
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After insert(5):
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After insert(13):
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After remove(3):
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