
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Schneider

Algorithms and Data Structures

Winter Term 2019/2020

Sample Solution Exercise Sheet 7

Remark: For this exercise, the material of the eleventh video lecture is relevant.

Exercise 1: Binary Search Trees - Finding the Successor

(a) Give an algorithm that takes as input a node of a binary search tree and outputs its successor in
the tree, i.e., the node with the next larger key in O(d), where d is the depth of the tree.

(b) Explain the correctness and the running time of your algorithm.

Sample Solution

(a) Algorithm 1 successor(v)

if v.right 6= None then . if there is a right subtree, successor must be there
crt ← v.right
while crt.left 6= None do

crt ← crt.left
return crt

else . otherwise some parent might be successor
crt ← u
prt ← crt.parent
while prt 6= None and prt.left 6= crt do

crt ← prt
prt ← crt.parent

return prt . prt is None if no fitting successor is found

(b) Runtime: In the worst case, we traverse the tree from the root to a leaf or the other way around
in one of the while loops, which takes at most O(d).

Correctness: If v has a right subtree, the a successor must be there, because all nodes outside of
the right subtree of v are either smaller than the key of v or bigger than all keys in the right subtree
of v. The smallest key in the right subtree is the “leftmost node”. We obtain it by traversing to
the right child of v and then to the left child as long as possible. We do this in the first half of
the algorithm.

If v has no right subtree then another node might be its successor. A successor can not be in
the left subtree of v since it contains only smaller keys. The successor can also not be in another
subtree of an ancestor of v (a subtree which v is not member of). This is because if v is in the
right subtree of an ancestor then all keys in the left subtree of that ancestor are smaller and can
thus not be successors. If v is in the left subtree of an ancestor than the ancestor has a bigger
key than v, and all keys in the right subtree of that ancestor have an even bigger key than said
ancestor (which rules them out as successor).



So we only have to focus on ancestors of v. No ancestor of v where v is in the right subtree can
be its successor, since it has a smaller key. Let w be the first ancestor of v, where v is in the left
subtree of w. Then w has a bigger key than v. Any other ancestor of w (and thereby of v) has
a key which is either smaller than that of v or larger than that of w, and both rules them out as
successors. So w is the only candidate we care about (in case v has no right subtrees).

To obtain said ancestor w we traverse to parent nodes starting from v as long as the current node
is a right child of its parent. We stop as soon as we are at the root, or we find a node which is
left child of its parent in which case we return the parent as successor (this happens in the second
half of the algorithm).

Exercise 2: AVL Trees

Consider the following AVL tree
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(a) In the above tree, perform the operations insert(4), insert(7) and insert(1) and the necessary
rotations to re-balance the AVL-tree. Draw the state of the tree after each operation.

Remark: Inserting works the same as in binary search trees. Afterwards, for each ancestor of
the inserted node (bottom up), repair the AVL condition (if violated) by performing an according
rotation (left or right).

(b) In the resulting tree, perform the operations delete(5) and delete(7) and the necessary rotations
to re-balance the AVL-tree. Draw the state of the tree after each operation.

Remark: Deleting works the same as in binary search trees. Afterwards, starting at the position
of the node that was used to replace the deleted key, for each ancestor (bottom up) repair the AVL
condition (if violated) by performing an according rotation (left or right or double rotations).

Sample Solution

(a) insert(4), before balance:
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insert(7), before balance:
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insert(7), after balance:
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insert(1), before balance:
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insert(1), after balance:
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(b) delete(5), (no balance required):
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delete(7), before balance:
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delete(7), double rotation part 1:
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delete(7), double rotation part 2:
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Exercise 3: (a, b)-Trees

Consider the following (2, 4)-tree

5 13 19
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(a) In the given tree, perform the operations insert(2), insert(26) and insert(36). Draw the state
of the (2, 4)-tree after each operation.

(b) In the resulting tree, perform the operations delete(11), delete(3). Draw the state of the (2, 4)-
tree after each operation.

(c) For exercise lesson: In the resulting tree from part (b), perform delete(13) and draw the state
of the (2, 4)-tree.

Remark: For comprehensive details on all cases of the delete operation consider, e.g., “Introduction
to Algorithms” by Cormen, Leierson, Rivest and Stein.

Sample Solution

(a) insert(2):
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insert(26) step 1:
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insert(26) step 2:
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split!



insert(26) step 3:
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insert(26) step 4:
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insert(36) step 1:
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insert(36) step 2:
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(b) delete(11) step 1:
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delete(11) step 2:
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rotate!

delete(3) step 1:
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delete(3) step 2:
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delete biggest of left subtree

fill in!



delete(3) step 3:
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(c) delete(13) step 1:
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delete(13) step 2:
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delete biggest of right subtree

fill in!

delete(13) step 3:
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Remark: For more details on all cases of the delete operation consider e.g. “Introduction to Algo-
rithms” by Cormen, Leierson, Rivest and Stein.


