Algorithms Theory
 Exercise Sheet 1

Exercise 1: Smallest Triangle

In the lecture, we discussed an algorithm to determine the distance between the closest pair of points. We now want to solve the following similar problem: Given a set of points S in the plane, determine the smallest triangle. That is, if for three points a, b, c we define $d(a, b, c):=d(a, b)+d(a, c)+d(b, c)$, we want to compute $\min \{d(a, b, c) \mid a, b, c \in S\}$.
Describe how to adjust the algorithm from the lecture to solve the given problem. Does the runtime change and if yes, how?

Exercise 2: Landau-Notation
Prove or disprove the following statements
(a) $4 n^{3}+8 n^{2}+5 n \in O\left(2 n^{3}\right)$.
(b) $2 n \in O(10 \sqrt{n})$.
(c) $\log _{2}\left(2^{n} \cdot n^{3}\right) \in \Theta(5 n)$

