
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
P. Bamberger

Algorithm Theory

Exercise Sheet 3

Exercise 1: Knapsack with Integer Values (11 Points)

Given n items 1, . . . , n with weights wi ∈ R and values vi ∈ N and a bag capacity W , we want to find
a subset S ⊆ {1, . . . , n} that maximizes

∑
i∈S vi under the restriction

∑
i∈S wi ≤W .

Give an efficient1 algorithm for this problem that uses the principle of dynamic programming.

Hint: Define a function that computes for a k ∈ {1, . . . , n} and an integer V the minimum weight of
a collection of items from {1, . . . , k} that has value V .

Exercise 2: Dynamic Programming (10 Points)

Conisder the following functions fi : N→ N

f1(n) = n− 1

f2(n) =

{
n
2 if 2 divides n

n else

f3(n) =

{
n
3 if 3 divides n

n else

”m divides n” means there is a k ∈ N with k ·m = n.

For a given n ≥ 1, we want to find die minimal number of applications of the functions f1, f2, f3
needed to reach 1. Formally: Find the minimal k for which there are i1, . . . , ik ∈ {1, 2, 3} with
fi1(fi2(. . . (fik(n)) . . . ) = 1.

Devise an algorithm in pseudocode to solve the problem and analyze the runtime.

Exercise 3: Amortized Analysis (9 Points)

Suppose a sequence of n operations are performed on an (unknown) data structure in which the i-th
operation costs i if i is an exact power of 2, and 1 otherwise.

Operation 1 2 3 4 5 6 7 8 9 . . . 15 16 17 . . .

Actual Cost 1 2 1 4 1 1 1 8 1 . . . 1 16 1 . . .

Tabelle 1: Operations and their actual costs

Use the potential function method to show that each operation has constant amortized cost.

Hint: The number of consecutive operations that are not an exact power of 2 and are performed
immediately before operation (i + 1) is i− 2`(i) where `(i) := blog2 ic.

1under the assumption that the maximum value is polynomial in n


