University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Bamberger

Algorithm Theory Exercise Sheet 3

Exercise 1: Knapsack with Integer Values (11 Points)

Given n items $1, \ldots, n$ with weights $w_i \in \mathbb{R}$ and values $v_i \in \mathbb{N}$ and a bag capacity W, we want to find a subset $S \subseteq \{1, \ldots, n\}$ that maximizes $\sum_{i \in S} v_i$ under the restriction $\sum_{i \in S} w_i \leq W$.

Give an efficient¹ algorithm for this problem that uses the principle of dynamic programming.

Hint: Define a function that computes for a $k \in \{1, ..., n\}$ and an integer V the minimum weight of a collection of items from $\{1, ..., k\}$ that has value V.

Exercise 2: Dynamic Programming

Conisder the following functions $f_i : \mathbb{N} \to \mathbb{N}$

$$f_1(n) = n - 1$$

$$f_2(n) = \begin{cases} \frac{n}{2} & \text{if } 2 \text{ divides } n \\ n & \text{else} \end{cases}$$

$$f_3(n) = \begin{cases} \frac{n}{3} & \text{if } 3 \text{ divides } n \\ n & \text{else} \end{cases}$$

"*m* divides *n*" means there is a $k \in \mathbb{N}$ with $k \cdot m = n$.

For a given $n \ge 1$, we want to find die minimal number of applications of the functions f_1, f_2, f_3 needed to reach 1. Formally: Find the minimal k for which there are $i_1, \ldots, i_k \in \{1, 2, 3\}$ with $f_{i_1}(f_{i_2}(\ldots(f_{i_k}(n))\ldots) = 1.$

Devise an algorithm in pseudocode to solve the problem and analyze the runtime.

Exercise 3: Amortized Analysis

Suppose a sequence of n operations are performed on an (unknown) data structure in which the *i*-th operation costs i if i is an exact power of 2, and 1 otherwise.

Operation	1	2	3	4	5	6	7	8	9	 15	16	17	
Actual Cost	1	2	1	4	1	1	1	8	1	 1	16	1	

Tabelle 1: Operations and their actual costs

Use the **potential function** method to show that each operation has constant amortized cost.

Hint: The number of consecutive operations that are not an exact power of 2 and are performed immediately before operation (i + 1) is $i - 2^{\ell(i)}$ where $\ell(i) := \lfloor \log_2 i \rfloor$.

(9 Points)

(10 Points)

 $^{^1 \}mathrm{under}$ the assumption that the maximum value is polynomial in n