University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Bamberger

Algorithm Theory Exercise Sheet 4

Exercise 1: Fibonacci Heaps I

Consider the following Fibonacci heap (black nodes are marked, white nodes are unmarked). How does the given Fibonacci heap look after a decrease-key(v, 2) operation and how does it look after a subsequent delete-min operation?

Exercise 2: Fibonacci Heaps II

(10 Points)

(12 Points)

Show that in the worst case, the delete-min and the decrease-key operation on a Fibonacci heap can require time $\Omega(n)$.

Exercise 3: Union Find

Consider a sequence of operations on a disjoint-set forest using the union-by-size heuristic with path compression. Let f be the number of find-operations and n the number of make_set-operations.

Show that the total costs are $O(f + n \cdot \log n)$.

(8 Points)