University of Freiburg Dept. of Computer Science Prof. Dr. F. Kuhn P. Bamberger

Algorithm Theory Exercise Sheet 7

Exercise 1: Load Balancing

(2+6+5+5+4 Points)

Recall the load balancing problem from the lecture: Given m machines, n jobs and for each job i a processing time t_i , we want to assign each job to a machine such that the makespan (largest total processing time of any machine) is minimized. We have seen that the *modified greedy* algorithm, in which we go through the jobs by decreasing length and assign each job to the machine that currently has the smallest load, has an approximation ratio of 3/2.

In this exercise, we want to prove that the algorithm has an even better approximation ratio.

Assume we have n jobs with lengths $t_1 \ge t_2 \ge \cdots \ge t_n$. Let T be the makespan of the greedy solution and let i be a machine with load T. Further, let \hat{n} be the last job that is scheduled on machine i.

- (a) Shortly argue why it is sufficient to ignore jobs $\hat{n} + 1, \ldots, n$ and instead prove the desired ratio between greedy and optimal for jobs $1, \ldots, \hat{n}$.
- (b) Show that if an optimal solution for jobs $1, \ldots, \hat{n}$ assigns at most two jobs to each machine, the algorithm computes an optimal solution.

Hint: Think of a "canonical" way to assign at most two jobs to each machine and show that $T \leq T_{canonical} \leq T_{opt}$.

- (c) Show that therefore, either $t_{\hat{n}} \leq T_{opt}/3$ or the greedy algorithm computes an optimal solution.
- (d) Conclude that the algorithm has an approximation ratio of at most 4/3.
- (e) Show that the 4/3 bound is tight, i.e., there is a sequence of instances for which the ratio between Greedy and OPT converges to 4/3. *Hint: Consider* 2m + 1 jobs for m machines, three jobs with processing time m and two jobs with processing times m + 1, m + 2, ..., 2m 1 each.

Exercise 2: Two Knapsacks

(2+6 Points)

Consider the following variation of the knapsack problem: Given items $1, \ldots, n$ where each item *i* has a positive integer weight $w_i \in \mathbb{N}$ and a positive value $v_i > 0$ and **two** knapsacks of capacities W_1 and W_2 , we want to pack the items into the knapsacks such that

- for $j \in \{1, 2\}$, the total weight of the items in knapsack j is at most W_j .
- The total value of the items that are packed in either knapsack is maximized.
- (a) Prove that this problem is not equivalent to the standard knapsack problem with one knapsack of capacity $W_1 + W_2$ by showing that the total value that can be packed into one knapsack of capacity $W_1 + W_2$ can be *arbitrarily* larger than the total value that can be packed into two knapsacks of capacities W_1 and W_2 .
- (b) Assume that $W_1 \ge W_2$. A simple strategy would be to first compute an optimal solution for a knapsack of capacity W_1 and afterwards, with the remaining elements, an optimal solution for a knapsack of capacity W_2 . Show that this algorithm always computes at least a 2-approximation for the problem.

Show that taking all nodes is a 2-approximation algorithm for the vertex cover problem in regular graphs (graphs where all nodes have the same degree)