

Introduction

Algorithm Theory WS 2019/20

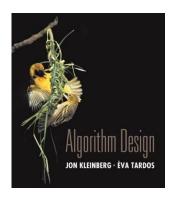
Fabian Kuhn

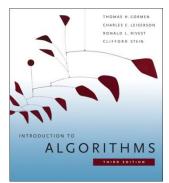
About the Course

Design and analysis techniques for algorithms

- Topics of the course (tentative):
 - divide and conquer
 - greedy
 - dynamic programming
 - advanced data structures
 - amortized analysis
 - graph algorithms
 - randomization
 - approximation algorithms
 - online algorithms
 - parallel algorithms

Requirements




- I assume that you have basic algorithms and data structures knowledge as well as some mathematical maturity
 - E.g., from the Bachelor course Informatik 2 and basic math courses
- In particular, you should be (at least partly) familiar with
 - math. induction, basic combinatorics & (discrete) probability theory, ...
 - Big-O notation and Landau notation more generally
 - searching and sorting (binary search, mergesort, quicksort)
 - binary search trees, balanced binary search trees
 - priority queues (heaps)
 - hash tables
 - basic graph-theoretic definitions
 - representations of graphs
 - basic graph algorithms: traversal (depth-first, breadth-first), minimum spanning trees, shortest paths

Literature

- J. Kleinberg, E. Tardos
 Algorithm Design
 Addison Wesley, 2005
- T. Cormen, C. Leiserson, R. Rivest, C. Stein Introduction to Algorithms, Third Edition, MIT Press, 2009
- T. Ottmann, P. Widmayer
 Algorithmen und Datenstrukturen
 4th Edition, Spektrum Akademischer Verlag,
 Heidelberg, 2002
- Original literature

Lecture

Lecture (101-00-026)

- Tuesday $16:15 17:45 \ (\approx every 2^{nd} week)$
- Thursday 10:15 11:45

Exercise Tutorials (101-00-026 + 101-01-016)

- Tuesday 16:15 18:00 (English) + 16:15 18:00 (German)
- First exercise tutorial on Tue, Nov. 5

Language

Lectures will be in English

General Remarks

Theory lecture (there will be math)

Recordings

- Most lectures will be recorded
- No guarantee that there's always a recording!

Web Page

http://ac.informatik.uni-freiburg.de

- → Teaching → Winter Term 2019/20 → Algorithm Theory
- We will publish all important information there!
 - Check in the next days for additional information on the exercises.
- Check the web page regularly!
- Recordings will be put online
 - Sometimes possibly with some delay...

Forum

- In addition to the web page, we will also use a forum
 - The forum is provided through the Daphne system
 - You need to sign up on Daphne for this course to use the forum
- The link to the forum and for signing up will be published on the web page
- If you have a question about the lecture or the exercises,
 please use the forum instead of writing an email to one of us!
 - Like this, all of us and also your colleagues see the question and can answer to it
 - We can directly answer a question for everybody
 - Of course feel free to also use the forum to discuss anything related to the topics and organization of the lecture

Exercises

General Information

- There will be (theoretical) exercises to practice the material
 - We will try to provide sample solutions (not always guaranteed)
- ≈ 1 problem set every 2 weeks
- You need to do the exercises either alone or in groups of 2. We encourage you to team up and do them in groups of 2!
 - send email to Philipp Bamberger (philipp.bamberger@cs.uni-freiburg.de)
 - write with whom you'd like to do the exercises
 - indicate whether you'd prefer to have a German tutorial group
- 50% of all exercise points are needed to be admitted to the exam

Tutorials

Tuesdays (every 2nd week, first on Nov. 5)

Exercises

Exercise groups

- 2 exercise groups (1 in English, 1 in German)
 - English group: Johannes Kalmbach (Tue, 16:15 18:00)
 - German group: Pascal Bachor (Tue, 16:15 18:00)
 - sign up by email to Philipp Bamberger (see last slide)

Assistants

Philipp Bamberger, Pascal Bachor, Johannes Kalmbach

Handing in solutions

- Solutions are always due on Thursday at 10:15 (before lecture)
- Hand in by email to your tutor or on paper (either in the lecture or the letter box in building 51)

Exam

Final Exam

- Final exam will take place after the semester
 - As soon as we know the date, we will publish it on the web page
- 50% of the exercise points are required to be admitted
 - Solving exercises is the best exam preparation!
- You will be allowed to bring 5 A4 pages of handwritten notes to the exam. No other material will be allowed