

Chapter 1 Divide and Conquer

Algorithm Theory WS 2019/20

Fabian Kuhn

Divide-And-Conquer Principle

- Important algorithm design method
- Examples from basic alg. & data structures class (Informatik 2):
 - Sorting: Mergesort, Quicksort
 - Binary search
- Further examples
 - Median
 - Compairing orders
 - Convex hull / Delaunay triangulation / Voronoi diagram
 - Closest pairs
 - Line intersections
 - Polynomial multiplication / FFT
 - ..

function Quick (*S*: sequence): sequence;

```
{returns the sorted sequence S}
```

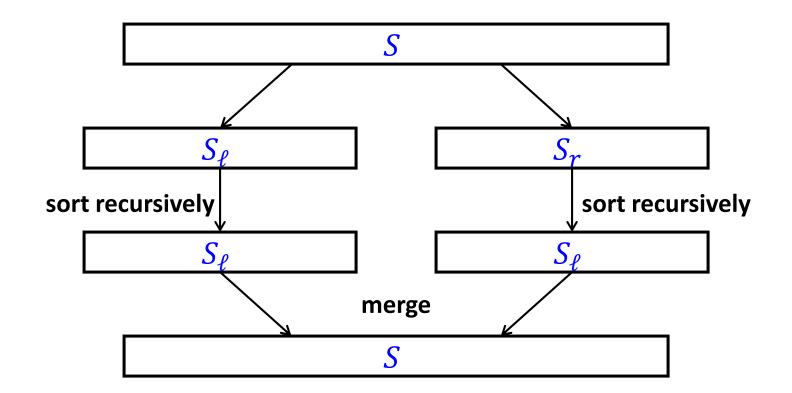
begin

 $S_{\rho} \leq v$

if $\#S \leq 1$ then return Selse { choose pivot element v in S;partition S into S_{ℓ} with elements $\geq v$,and S_r with elements $\geq v$ return $Quick(S_{\ell})$ v $Quick(S_r)$

end;

 $S_r \geq v$



Formulation of the D&C principle

Divide-and-conquer method for solving a problem instance of size *n*:

1. Divide

 $n \leq c$: Solve the problem directly.

n > c: Divide the problem into k subproblems of sizes $n_1, ..., n_k < n$ ($k \ge 2$).

2. Conquer

Solve the k subproblems in the same way (recursively).

3. Combine

Combine the partial solutions to generate a solution for the original instance.

Analysis

Recurrence relation:

• T(n): max. number of steps necessary for solving an instance of size n

•
$$T(n) = \begin{cases} a & \text{if } n \leq c \\ T(n_1) + \dots + T(n_k) & \text{if } n > c \\ + \cos t \text{ for divide and combine} \end{cases}$$

Special case:
$$k = 2$$
, $n_1 = n_2 = n_2'$

- cost for divide and combine: DC(n)
- T(1) = a
- T(n) = 2T(n/2) + DC(n)

Comparing Orders

- Many web systems maintain user preferences / rankings on things like books, movies, restaurants, ...
- Collaborative filtering:
 - Predict user taste by comparing rankings of different users.
 - If the system finds users with similar tastes, it can make recommendations (e.g., Amazon)
- Core issue: Compare two rankings
 - Intuitively, two rankings (of movies) are more similar, the more pairs are ordered in the same way
 - Label the first user's movies from 1 to n according to ranking
 - Order labels according to second user's ranking
 - How far is this from the ascending order (of the first user)?

Formal problem:

• **Given**: array $A = [a_1, a_2, a_3, \dots, a_n]$ of distinct elements

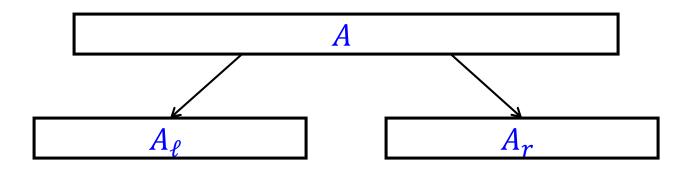
• **Objective**: Compute number of inversions *I*

$$I \coloneqq \left| \left\{ 0 \le i < j \le n \mid a_i > a_j \right) \right\} \right|$$

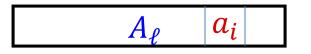
• **Example**: A = [4, 1, 5, 2, 7, 10, 6]

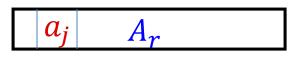
• Naïve solution:

Divide and conquer



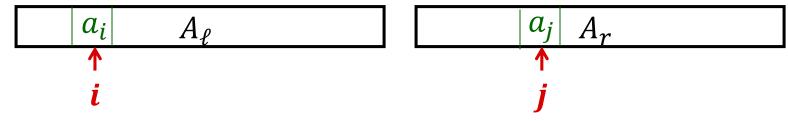
- 1. Divide array into 2 equal parts A_{ℓ} and A_r
- 2. Recursively compute #inversions in A_{ℓ} and A_{r}
- 3. Combine: add #pairs $a_i \in A_\ell$, $a_j \in A_r$ such that $a_i > a_j$





Combine Step

Assume A_{ℓ} and A_r are sorted



Idea:

- Maintain pointers *i* and *j* to go through the sorted parts
- While going through the sorted parts, we merge the two parts into one sorted part (like in MergeSort)

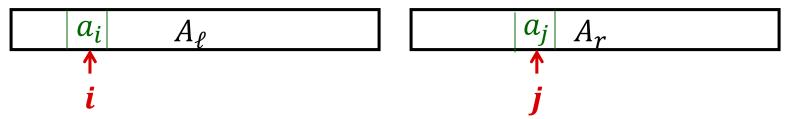
and we count the number of inversions between the parts

Invariant:

- At each point in time, all inversions involving some element left of *i* (in A_l) or left of *j* (in A_r) have been counted
 - and all others still have to be counted...

Combine Step

Assume A_{ℓ} and A_r are sorted



- Pointers *i* and *j*, initially pointing to first elements of A_{ℓ} and A_r
- If $a_i < a_j$:
 - $-a_i$ is smallest among the remaining elements
 - No inversion of a_i and one of the remaining elements
 - Do not change count
- If $a_i > a_j$:
 - $-a_j$ is smallest among the remaining elements
 - $-a_i$ is smaller than all remaining elements in A_ℓ
 - Add number of remaining elements in A_{ℓ} to count
- Increment pointer, pointing to the smaller element

Algorithm Theory, WS 2019/20

Fabian Kuhn

Combine Step

- Need sub-sequences in sorted order
- Then, combine step is like merging in merge sort
- Idea: Solve sorting and #inversions at the same time!
 - 1. Partition A into two equal parts A_{ℓ} and A_r
 - 2. Recursively compute #inversions and sort A_{ℓ} and A_r

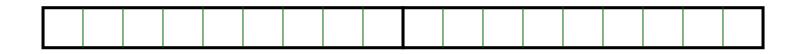
3. Merge A_{ℓ} and A_r to sorted sequence, at the same time, compute number of inversions between elements a_i in A_{ℓ} and a_j in A_r

Combine Step: Example

• Assume A_{ℓ} and A_r are sorted

3 5 8 13 14 18 24 25 30

6	7	9	19	21	23	28	32	33
---	---	---	----	----	----	----	----	----



$$T(n) \le 2 \cdot T(n/2) + cn, \qquad T(1) \le a$$

Guess the solution by repeated substitution:

$$T(n) \le 2 \cdot T(n/2) + cn, \qquad T(1) \le a$$

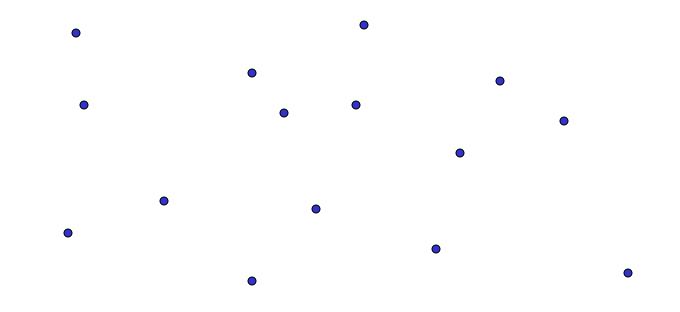
Verify by induction:

$$T(n) \le 2 \cdot T(n/2) + cn, \qquad T(1) \le a$$

Guess the solution by drawing the recursion tree:

Geometric divide-and-conquer

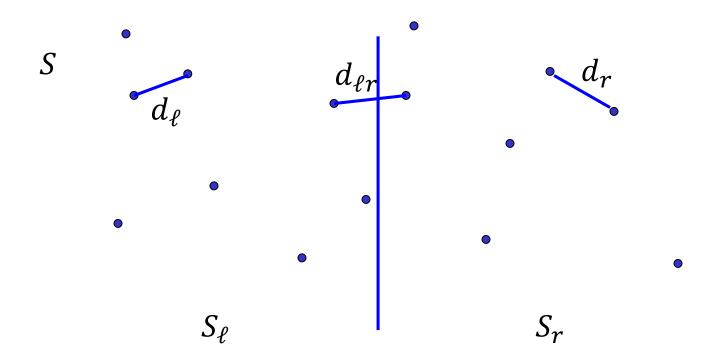
Closest Pair Problem: Given a set *S* of *n* points, find a pair of points with the smallest distance.



Naïve solution:

Divide-and-conquer solution

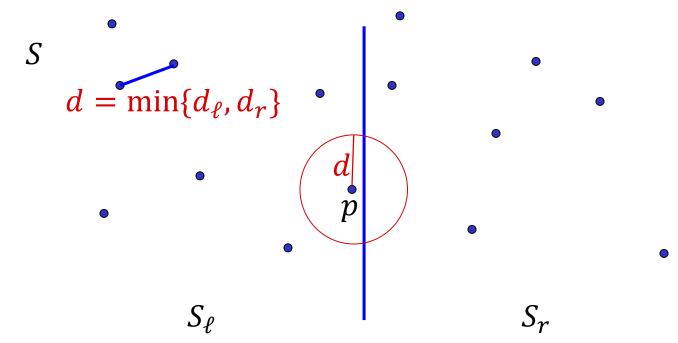
- **1. Divide:** Divide S into two equal sized sets S_{ℓ} und S_r .
- **2. Conquer:** $d_{\ell} = \text{mindist}(S_{\ell})$ $d_r = \text{mindist}(S_r)$
- **3.** Combine: $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}$ return $\min\{d_{\ell}, d_r, d_{\ell r}\}$



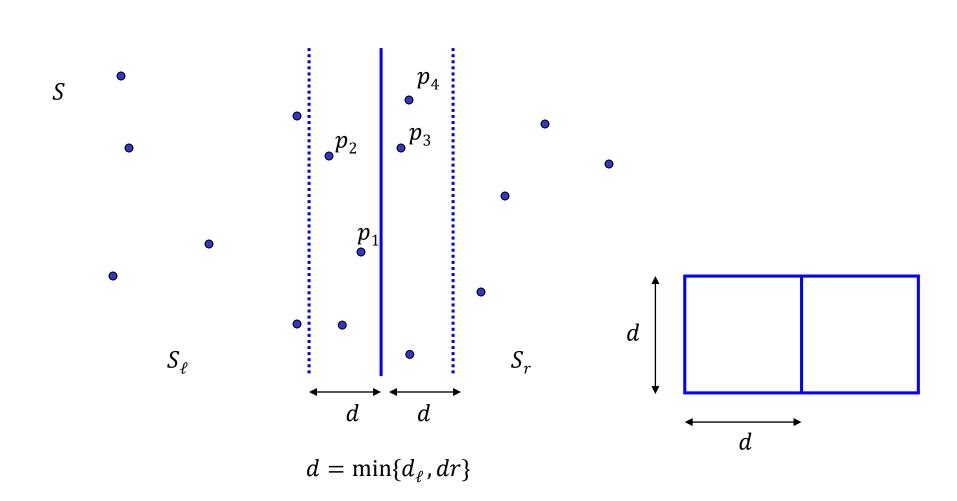
Divide-and-conquer solution

- **1. Divide:** Divide S into two equal sized sets S_{ℓ} und S_r .
- **2. Conquer:** $d_{\ell} = \text{mindist}(S_{\ell})$ $d_r = \text{mindist}(Sr)$ **3. Combine:** $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}$
- **3.** Combine: $d_{\ell r} = \min\{d(p_{\ell}, p_r) \mid p_{\ell} \in S_{\ell}, p_r \in S_r\}$ return $\min\{d_{\ell}, d_r, d_{\ell r}\}$

Computation of $d_{\ell r}$:



Combine step



- 1. Consider only points within distance $\leq d$ of the bisection line, in the order of increasing y-coordinates.
- 2. For each point p consider all points q on the other side which are within y-distance less than d
- 3. There are at most 4 such points.

Implementation

- Initially sort the points in *S* in order of increasing *x*-coordinates
- While computing closest pair, also sort *S* according to *y*-coord.
 - Partition S into S_{ℓ} and S_r , solve and sort sub-problems recursively
 - Merge to get sorted S according to y-coordinates
 - Center points: points within x-distance $d = \min\{d_{\ell}, d_r\}$ of center
 - Go through center points in S in order of incr. y-coordinates

$$T(n) = 2 \cdot T(n/2) + c \cdot n, \qquad T(1) = a$$

Solution:

• Same as for computing number of number of inversions, merge sort (and many others...)

 $T(n) = O(n \cdot \log n)$