Chapter 1 Divide and Conquer

Algorithm Theory WS 2019/20

Fabian Kuhn

Formulation of the D\&C principle

Divide-and-conquer method for solving a problem instance of size n :

1. Divide

$n \leq c$: Solve the problem directly.
$n>c$: Divide the problem into k subproblems of sizes $n_{1}, \ldots, n_{k}<n(k \geq 2)$.

2. Conquer

Solve the k subproblems in the same way (recursively).
3. Combine

Combine the partial solutions to generate a solution for the original instance.

Recurrence Relations

Recurrence relation

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+O\left(n^{c}\right), \quad T(n)=O(1) \text { for } n \leq n_{0}
$$

Recurrence Relations: Master Theorem

Recurrence relation

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n), \quad T(n)=O(1) \text { for } n \leq n_{0}
$$

Cases

- $f(n)=O\left(n^{c}\right), c<\log _{b} a$

$$
T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

- $f(n)=\Omega\left(n^{c}\right), c>\log _{b} a$

$$
T(n)=\Theta(f(n))
$$

- $f(n)=\Theta\left(n^{c} \cdot \log ^{k} n\right), k \geq 0, c=\log _{b} a$

$$
T(n)=\Theta\left(n^{c} \cdot \log ^{k+1} n\right)
$$

Polynomials

Real polynomial p in one variable x :

$$
p(x)=a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}
$$

Coefficients of $p: a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$
Degree of p : largest power of x in p ($n-1$ in the above case)

Example:

$$
p(x)=3 x^{3}-15 x^{2}+18 x
$$

Set of all real-valued polynomials in $x: \mathbb{R}[x] \quad$ (polynomial ring)

Operations: Evaluation

- Given: Polynomial $p \in \mathbb{R}[x]$ of degree $n-1$

$$
p(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}
$$

Operations: Evaluation

- Given: Polynomial $p \in \mathbb{R}[x]$ of degree $n-1$

$$
p(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}
$$

- Horner's method for evaluation at specific value x_{0} :

$$
p\left(x_{0}\right)=\left(\ldots\left(\left(a_{n-1} x_{0}+a_{n-2}\right) x_{0}+a_{n-3}\right) x_{0}+\cdots+a_{1}\right) x_{0}+a_{0}
$$

- Pseudo-code:
$p:=a_{n-1} ; i:=n-1$;
while $(i>0)$ do

$$
\begin{aligned}
& i:=i-1 \\
& p:=p \cdot x_{0}+a_{i}
\end{aligned}
$$

- Running time: $O(n)$

Operations: Addition

- Given: Polynomials $p, q \in \mathbb{R}[x]$ of degree $n-1$

$$
\begin{aligned}
& p(x)=a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0} \\
& q(x)=b_{n-1} x^{n-1}+b_{n-2} x^{n-2}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

- Compute sum $p(x)+q(x)$:

$$
\begin{aligned}
p(x)+q & (x) \\
& =\left(a_{n-1} x^{n-1}+\cdots+a_{0}\right)+\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right) \\
& =\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\cdots+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)
\end{aligned}
$$

Operations: Multiplication

- Given: Polynomials $p, q \in \mathbb{R}[x]$ of degree $n-1$

$$
\begin{aligned}
& p(x)=a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& q(x)=b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

- Product $p(x) \cdot q(x)$:

$$
\begin{aligned}
p(x) \cdot q(x) & =\left(a_{n-1} x^{n-1}+\cdots+a_{0}\right) \cdot\left(b_{n-1} x^{n-1}+\cdots+b_{0}\right) \\
& =c_{2 n-2} x^{2 n-2}+c_{2 n-3} x^{2 n-3}+\cdots+c_{1} x+c_{0}
\end{aligned}
$$

- Obtaining c_{i} : what products of monomials have degree i ?

$$
\text { For } 0 \leq i \leq 2 n-2: c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}
$$

where $a_{i}=b_{i}=0$ for $i \geq n$.

- Running time naïve algorithm:

Faster Multiplication?

- Multiplication is slow $\left(\Theta\left(n^{2}\right)\right)$
- Try divide-and-conquer to get a faster algorithm
- Assume: degree is $n-1, n$ is even
- Divide polynomial $p(x)=a_{n-1} x^{n-1}+\cdots+a_{0}$ into 2 polynomials of degree $n / 2-1$:

$$
\begin{aligned}
& p_{0}(x)=a_{n / 2-1} x^{n / 2-1}+\cdots+a_{0} \\
& p_{1}(x)=a_{n-1} x^{n / 2^{-1}}+\cdots+a_{n / 2} \\
& p(x)=p_{1}(x) \cdot x^{n / 2}+p_{0}(x)
\end{aligned}
$$

- Similarly: $q(x)=q_{1}(x) \cdot x^{n / 2}+q_{0}(x)$

Use Divide-And-Conquer

- Divide:

$$
p(x)=p_{1}(x) \cdot x^{n / 2}+p_{0}(x), \quad q(x)=q_{1}(x) \cdot x^{n / 2}+q_{0}(x)
$$

- Multiplication:

$$
\begin{aligned}
p(x) q(x)= & p_{1}(x) q_{1}(x) \cdot x^{n}+ \\
& \left(p_{0}(x) q_{1}(x)+p_{1}(x) q_{0}(x)\right) \cdot x^{n / 2}+p_{0}(x) q_{0}(x)
\end{aligned}
$$

- 4 multiplications of degree $n / 2-1$ polynomials:

$$
T(n)=4 T(n / 2)+O(n)
$$

- Leads to $T(n)=\Theta\left(n^{2}\right)$ like the naive algorithm...
- follows immediately by using the master theorem

More Clever Recursive Solution

- Recall that

$$
\begin{aligned}
p(x) q(x)= & p_{1}(x) q_{1}(x) \cdot x^{n}+ \\
& \left(p_{0}(x) q_{1}(x)+p_{1}(x) q_{0}(x)\right) \cdot x^{n / 2}+p_{0}(x) q_{0}(x)
\end{aligned}
$$

- Compute $r(x)=\left(p_{0}(x)+p_{1}(x)\right) \cdot\left(q_{0}(x)+q_{1}(x)\right)$:

Karatsuba Algorithm

- Recursive multiplication:

$$
\begin{aligned}
r(x)= & \left(p_{0}(x)+p_{1}(x)\right) \cdot\left(q_{0}(x)+q_{1}(x)\right) \\
p(x) q(x)= & p_{1}(x) q_{1}(x) \cdot x^{n} \\
& +\left(r(x)-p_{0}(x) q_{0}(x)+p_{1}(x) q_{1}(x)\right) \cdot x^{n / 2} \\
& +p_{0}(x) q_{0}(x)
\end{aligned}
$$

- Recursively do 3 multiplications of degr. (n/2 -1)-polynomials

$$
T(n)=3 T(n / 2)+O(n)
$$

- Gives: $T(n)=O\left(n^{1.58496 \ldots}\right) \quad$ (see Master theorem)

Representation of Polynomials

Coefficient representation:

- Polynomial $p(x) \in \mathbb{R}[x]$ of degree $n-1$ is given by its n coefficients a_{0}, \ldots, a_{n-1} :

$$
p(x)=a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

- Coefficient vector $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots a_{n-1}\right)$
- Example:

$$
p(x)=3 x^{3}-15 x^{2}+18 x
$$

- The most typical (and probably most natural) representation of polynomials

Representation of Polynomials

Product of linear factors:

- Polynomial $p(x) \in \mathbb{C}[x]$ of degr. $n-1$ is given by its $n-1$ roots

$$
p(x)=a_{n-1} \cdot\left(x-x_{1}\right) \cdot\left(x-x_{2}\right) \cdot \ldots \cdot\left(x-x_{n-1}\right)
$$

- Example:

$$
p(x)=3 x(x-2)(x-3)
$$

- Every polynomial has exactly $n-1$ roots $x_{i} \in \mathbb{C}$ (s.t. $p\left(x_{i}\right)=0$)
- Polynomial is uniquely defined by the $n-1$ roots and a_{n-1}
- We will not use this representation...

Representation of Polynomials

Point-value representation:

- Polynomial $p(x) \in \mathbb{R}[x]$ of degree $n-1$ is given by n point-value pairs:

$$
p=\left\{\left(x_{0}, p\left(x_{0}\right)\right),\left(x_{1}, p\left(x_{1}\right)\right), \ldots,\left(x_{n-1}, p\left(x_{n-1}\right)\right)\right\}
$$

where $x_{i} \neq x_{j}$ for $i \neq j$.

- Example:The polynomial

$$
p(x)=3 x(x-2)(x-3)
$$

is uniquely defined by the four point-value pairs $(0,0),(1,6),(2,0),(3,0)$.

Operations: Coefficient Representation

$$
p(x)=a_{n-1} x^{n-1}+\cdots+a_{0}, \quad q(x)=b_{n-1} x^{n-1}+\cdots+b_{0}
$$

Evaluation: Horner's method: Time $O(n)$
Addition:

$$
p(x)+q(x)=\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\cdots+\left(a_{0}+b_{0}\right)
$$

- Time: $O(n)$

Multiplication:

$$
p(x) \cdot q(x)=c_{2 n-2} x^{2 n-2}+\cdots+c_{0}, \quad \text { where } c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}
$$

- Naive solution: Need to compute product $a_{i} b_{j}$ for all $0 \leq i, j \leq n$
- Time: $O\left(n^{2}\right)$

Operations: Linear Factors (Roots)

$$
\begin{aligned}
& p(x)=a_{n-1} \cdot\left(x-x_{1}\right) \cdot \ldots \cdot\left(x-x_{n-1}\right) \\
& q(x)=b_{n-1} \cdot\left(x-x_{1}\right) \cdot \ldots \cdot\left(x-x_{n-1}\right)
\end{aligned}
$$

Evaluation:

- Just plug in the value where the poly. is evaluated: Time $O(n)$

Multiplication:

- Concatenate the two representations: Time $O(n)$

Addition:

- Need to find the roots of $p(x)+q(x)$
- For polynomials of degree >4, this is not possible by using basic arithmetic operations $(+,-, \cdot, /, \sqrt[a]{b})$
- In the usual computational model impossible
- Numerically, the roots can be computed to arbitrary precision

Operations: Point-Value Representation

$$
\begin{aligned}
& \boldsymbol{p}=\left\{\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{p}\left(\boldsymbol{x}_{\mathbf{0}}\right)\right), \ldots,\left(\boldsymbol{x}_{\boldsymbol{n}-1}, \boldsymbol{p}\left(\boldsymbol{x}_{n-1}\right)\right)\right\} \\
& \boldsymbol{q}=\left\{\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{q}\left(\boldsymbol{x}_{\mathbf{0}}\right)\right), \ldots,\left(\boldsymbol{x}_{\boldsymbol{n}-1}, \boldsymbol{q}\left(\boldsymbol{x}_{\boldsymbol{n}-1}\right)\right)\right\}
\end{aligned}
$$

- Note: we use the same points $x_{0}, \ldots, x_{\boldsymbol{n}}$ for both polynomials

Addition:

$$
p+q=\left\{\left(x_{0}, p\left(x_{0}\right)+q\left(x_{0}\right)\right), \ldots,\left(x_{n-1}, p\left(x_{n-1}\right)+q\left(x_{n-1}\right)\right)\right\}
$$

- Time: $O(n)$

Multiplication:

$$
p \cdot q=\left\{\left(x_{0}, p\left(x_{0}\right) \cdot q\left(x_{0}\right)\right), \ldots,\left(x_{2 n-2}, p\left(x_{2 n-2}\right) \cdot q\left(x_{2 n-2}\right)\right)\right\}
$$

- Time: $O(n)$

Evaluation: Polynomial interpolation can be done in $O\left(n^{2}\right)$

Operations on Polynomials

Cost depending on representation:

	Coefficient	Roots	Point-Value
Evaluation	$O(n)$	$O(n)$	$O\left(n^{2}\right)$
Addition	$O(n)$	∞	$O(n)$
Multiplication	$O\left(n^{1.58}\right)$	$O(n)$	$O(n)$

Faster Polynomial Multiplication?

Multiplication is fast when using the point-value representation
Idea to compute $p(x) \cdot q(x)$ (for polynomials of degree $<n$):

p, q of degree $n-1, n$ coefficients

Evaluation at points $x_{0}, x_{1}, \ldots, x_{2 n-2}$
$2 \times 2 n$ point-value pairs $\left(x_{i}, p\left(x_{i}\right)\right)$ and $\left(x_{i}, q\left(x_{i}\right)\right)$
Point-wise multiplication
$2 n$ point-value pairs $\left(x_{i}, p\left(x_{i}\right) q\left(x_{i}\right)\right)$
Interpolation
$p(x) q(x)$ of degree $2 n-2,2 n-1$ coefficients

Coefficients to Point-Value Representation

Given: Polynomial $p(x)$ by the coefficient vector $\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$
Goal: Compute $p(x)$ for all x in a given set X

- Where X is of size $|X|=N$
- Assume that N is a power of 2

Divide and Conquer Approach

- Divide $p(x)$ of degree $N-1$ (N is even) into 2 polynomials of degree ${ }^{N} / 2-1$ differently than in Karatsuba's algorithm
- $p_{0}(y)=a_{0}+a_{2} y+a_{4} y^{2}+\cdots+a_{N-2} y^{N / 2-1} \quad$ (even coeff.)
$p_{1}(y)=a_{1}+a_{3} y+a_{5} y^{2}+\cdots+a_{N-1} y^{N / 2-1} \quad$ (odd coeff.)

Coefficients to Point-Value Representation

Goal: Compute $p(x)$ for all x in a given set X of size $|X|=N$

- Divide $p(x)$ of degr. $N-1$ into 2 polynomials of degr. $N / 2-1$

$$
\begin{array}{ll}
p_{0}(y)=a_{0}+a_{2} y+a_{4} y^{2}+\cdots+a_{N-2} y^{N / 2-1} & \text { (even coeff.) } \\
p_{1}(y)=a_{1}+a_{3} y+a_{5} y^{2}+\cdots+a_{N-1} y^{N / 2-1} & \text { (odd coeff.) }
\end{array}
$$

Let's first look at the "combine" step:

- We need to compute $p(x)$ for all $x \in X$ after recursive calls for polynomials p_{0} and p_{1} :

Coefficients to Point-Value Representation

Goal: Compute $p(x)$ for all x in a given set X of size $|X|=N$

- Divide $p(x)$ of degr. $N-1$ into 2 polynomials of degr. $N / 2-1$

$$
\begin{array}{ll}
p_{0}(y)=a_{0}+a_{2} y+a_{4} y^{2}+\cdots+a_{N-2} y^{N / 2-1} & \text { (even coeff.) } \\
p_{1}(y)=a_{1}+a_{3} y+a_{5} y^{2}+\cdots+a_{N-1} y^{N / 2-1} & \text { (odd coeff.) }
\end{array}
$$

Let's first look at the "combine" step:

$$
\forall x \in X: \quad p(x)=p_{0}\left(x^{2}\right)+x \cdot p_{1}\left(x^{2}\right)
$$

- Recursively compute $p_{0}(y)$ and $p_{1}(y)$ for all $y \in X^{2}$

$$
\text { - Where } X^{2}:=\left\{x^{2}: x \in X\right\}
$$

- Generally, we have $\left|X^{2}\right|=|X|$

Analysis

Recurrence formula for the given algorithm:

Faster Algorithm?

- In order to have a faster algorithm, we need $\left|X^{2}\right|<|X|$

Choice of X

- Select points $x_{0}, x_{1}, \ldots, x_{N-1}$ to evaluate p and q in a clever way

Consider the N complex roots of unity:
Principle root of unity: $\omega_{N}=e^{2 \pi i / N}$

$$
\left(i=\sqrt{-1}, \quad e^{2 \pi i}=1\right)
$$

Powers of ω_{N} (roots of unity):

$$
1=\omega_{N}^{0}, \omega_{N}^{1}, \ldots, \omega_{N}^{N-1}
$$

Note: $\omega_{N}^{k}=e^{2 \pi i k / N}=\cos \frac{2 \pi k}{N}+i \cdot \sin \frac{2 \pi k}{N}$

Properties of the Roots of Unity

- Cancellation Lemma:

For all integers $n>0, k \geq 0$, and $d>0$, we have:

$$
\omega_{d n}^{d k}=\omega_{n}^{k}, \quad \omega_{n}^{k+n}=\omega_{n}^{k}
$$

- Proof:

Properties of the Roots of Unity

Claim: If $X=\left\{\omega_{2 k}^{i}: i \in\{0, \ldots, 2 k-1\}\right\}$, we have

$$
X^{2}=\left\{\omega_{k}^{i}: i \in\{0, \ldots, k-1\}\right\}, \quad\left|X^{2}\right|=\frac{|X|}{2}
$$

Analysis

New recurrence formula:

$$
T(N,|X|) \leq 2 \cdot T(N / 2,|X| / 2)+O(N+|X|)
$$

Faster Polynomial Multiplication?

Idea to compute $p(x) \cdot q(x)$ (for polynomials of degree $<n$):
p, q of degree $n-1, n$ coefficients
Evaluation at points $\omega_{2 n}^{0}, \omega_{2 n}^{1}, \ldots, \omega_{2 n}^{2 n-1}$
$2 \times 2 n$ point-value pairs $\left(\omega_{2 n}^{k}, p\left(\omega_{2 n}^{k}\right)\right)$ and $\left(\omega_{2 n}^{k}, q\left(\omega_{2 n}^{k}\right)\right)$
Point-wise multiplication
$2 n$ point-value pairs $\left(\omega_{2 n}^{k}, p\left(\omega_{2 n}^{k}\right) q\left(\omega_{2 n}^{k}\right)\right)$
Interpolation
$p(x) q(x)$ of degree $2 n-2,2 n-1$ coefficients

