

Chapter 1 Divide and Conquer

Algorithm Theory WS 2019/20

Fabian Kuhn

Formulation of the D&C principle

Divide-and-conquer method for solving a problem instance of size *n*:

1. Divide

 $n \leq c$: Solve the problem directly.

n > c: Divide the problem into k subproblems of sizes $n_1, ..., n_k < n$ ($k \ge 2$).

2. Conquer

Solve the k subproblems in the same way (recursively).

3. Combine

Combine the partial solutions to generate a solution for the original instance.

Recurrence relation

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^c), \qquad T(n) = O(1) \text{ for } n \le n_0$$

Recurrence relation

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \qquad T(n) = O(1) \text{ for } n \le n_0$$

Cases

•
$$f(n) = O(n^c), \ c < \log_b a$$

 $T(n) = \Theta(n^{\log_b a})$

•
$$f(n) = \Omega(n^c), \ c > \log_b a$$

 $T(n) = \Theta(f(n))$

•
$$f(n) = \Theta(n^c \cdot \log^k n), \ k \ge 0, c = \log_b a$$

$$T(n) = \Theta(n^c \cdot \log^{k+1} n)$$

Algorithm Theory, WS 2019/20

Real polynomial *p* in one variable *x*:

 $p(x) = a_{n-1}x^{n-1} + \dots + a_1x^1 + a_0$

Coefficients of $p: a_0, a_1, ..., a_n \in \mathbb{R}$ Degree of p: largest power of x in p (n - 1 in the above case)

Example:

$$p(x) = 3x^3 - 15x^2 + 18x$$

Set of all real-valued polynomials in $x: \mathbb{R}[x]$ (polynomial ring)

Operations: Evaluation

• Given: Polynomial $p \in \mathbb{R}[x]$ of degree n - 1

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

Operations: Evaluation

• Given: Polynomial $p \in \mathbb{R}[x]$ of degree n - 1

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

Horner's method for evaluation at specific value x₀:

$$p(x_0) = \left(\dots \left((a_{n-1}x_0 + a_{n-2})x_0 + a_{n-3} \right) x_0 + \dots + a_1 \right) x_0 + a_0$$

• Pseudo-code:

 $p \coloneqq a_{n-1}; i \coloneqq n-1;$ while (i > 0) do $i \coloneqq i-1;$ $p \coloneqq p \cdot x_0 + a_i$

• Running time: O(n)

Operations: Addition

• Given: Polynomials $p, q \in \mathbb{R}[x]$ of degree n - 1

$$p(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

$$q(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x + b_0$$

• Compute sum p(x) + q(x):

$$p(x) + q(x)$$

= $(a_{n-1}x^{n-1} + \dots + a_0) + (b_{n-1}x^{n-1} + \dots + b_0)$
= $(a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$

Operations: Multiplication

• Given: Polynomials $p, q \in \mathbb{R}[x]$ of degree n - 1

$$p(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

$$q(x) = b_{n-1}x^{n-1} + \dots + b_1x + b_0$$

• Product
$$p(x) \cdot q(x)$$
:

$$p(x) \cdot q(x) = (a_{n-1}x^{n-1} + \dots + a_0) \cdot (b_{n-1}x^{n-1} + \dots + b_0)$$

= $c_{2n-2}x^{2n-2} + c_{2n-3}x^{2n-3} + \dots + c_1x + c_0$

• Obtaining c_i : what products of monomials have degree *i*?

For
$$0 \le i \le 2n - 2$$
: $c_i = \sum_{j=0}^{l} a_j b_{i-j}$

where $a_i = b_i = 0$ for $i \ge n$.

• Running time naïve algorithm:

Algorithm Theory, WS 2019/20

Fabian Kuhn

Faster Multiplication?

- Multiplication is slow $(\Theta(n^2))$
- Try divide-and-conquer to get a faster algorithm
- Assume: degree is n 1, n is even
- Divide polynomial $p(x) = a_{n-1}x^{n-1} + \dots + a_0$ into 2 polynomials of degree n/2 1:

$$p_0(x) = a_{n/2-1}x^{n/2-1} + \dots + a_0$$

$$p_1(x) = a_{n-1}x^{n/2-1} + \dots + a_{n/2}$$

$$p(x) = p_1(x) \cdot x^{n/2} + p_0(x)$$

• Similarly: $q(x) = q_1(x) \cdot x^{n/2} + q_0(x)$

Use Divide-And-Conquer

• Divide:

 $p(x) = p_1(x) \cdot x^{n/2} + p_0(x), \qquad q(x) = q_1(x) \cdot x^{n/2} + q_0(x)$

• Multiplication:

$$p(x)q(x) = p_1(x)q_1(x) \cdot x^n + (p_0(x)q_1(x) + p_1(x)q_0(x)) \cdot x^{n/2} + p_0(x)q_0(x)$$

• 4 multiplications of degree n/2 - 1 polynomials:

$$T(n) = 4T\binom{n}{2} + O(n)$$

- Leads to $T(n) = \Theta(n^2)$ like the naive algorithm...
 - follows immediately by using the master theorem

More Clever Recursive Solution

Recall that

$$p(x)q(x) = p_1(x)q_1(x) \cdot x^n + (p_0(x)q_1(x) + p_1(x)q_0(x)) \cdot x^{n/2} + p_0(x)q_0(x)$$

• Compute $r(x) = (p_0(x) + p_1(x)) \cdot (q_0(x) + q_1(x))$:

Karatsuba Algorithm

• Recursive multiplication:

$$r(x) = (p_0(x) + p_1(x)) \cdot (q_0(x) + q_1(x))$$

$$p(x)q(x) = p_1(x)q_1(x) \cdot x^n$$

$$+ (r(x) - p_0(x)q_0(x) + p_1(x)q_1(x)) \cdot x^{n/2}$$

$$+ p_0(x)q_0(x)$$

• Recursively do 3 multiplications of degr. $\binom{n}{2} - 1$ -polynomials

$$T(n) = 3T\binom{n}{2} + O(n)$$

• Gives: $T(n) = O(n^{1.58496...})$

(see Master theorem)

Representation of Polynomials

Coefficient representation:

• Polynomial $p(x) \in \mathbb{R}[x]$ of degree n - 1 is given by its *n* coefficients a_0, \dots, a_{n-1} :

$$p(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

- Coefficient vector $\boldsymbol{a} = (a_0, a_1, \dots a_{n-1})$
- Example:

$$p(x) = 3x^3 - 15x^2 + 18x$$

• The most typical (and probably most natural) representation of polynomials

Algorithm Theory, WS 2019/20

Product of linear factors:

• Polynomial $p(x) \in \mathbb{C}[x]$ of degr. n - 1 is given by its n - 1 roots

$$p(x) = a_{n-1} \cdot (x - x_1) \cdot (x - x_2) \cdot \dots \cdot (x - x_{n-1})$$

• Example:

$$p(x) = 3x(x-2)(x-3)$$

- Every polynomial has exactly n − 1 roots x_i ∈ C (s.t. p(x_i) = 0)
 Polynomial is uniquely defined by the n − 1 roots and a_{n-1}
- We will not use this representation...

Representation of Polynomials

Point-value representation:

• Polynomial $p(x) \in \mathbb{R}[x]$ of degree n - 1 is given by *n* point-value pairs:

 $p = \{ (x_0, p(x_0)), (x_1, p(x_1)), \dots, (x_{n-1}, p(x_{n-1})) \}$

where $x_i \neq x_j$ for $i \neq j$.

• Example: The polynomial

$$p(x) = 3x(x-2)(x-3)$$

is uniquely defined by the four point-value pairs (0,0), (1,6), (2,0), (3,0).

Operations: Coefficient Representation

 $p(x) = a_{n-1}x^{n-1} + \dots + a_0, \qquad q(x) = b_{n-1}x^{n-1} + \dots + b_0$

Evaluation: Horner's method: Time O(n)

Addition:

$$p(x) + q(x) = (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_0 + b_0)$$

• Time: *O*(*n*)

Multiplication:

$$p(x) \cdot q(x) = c_{2n-2}x^{2n-2} + \dots + c_0$$
, where $c_i = \sum_{j=0}^{i} a_j b_{i-j}$

- Naive solution: Need to compute product $a_i b_j$ for all $0 \le i, j \le n$
- Time: $O(n^2)$

Algorithm Theory, WS 2019/20

Fabian Kuhn

Operations: Linear Factors (Roots)

$$p(x) = a_{n-1} \cdot (x - x_1) \cdot \dots \cdot (x - x_{n-1}) q(x) = b_{n-1} \cdot (x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

Evaluation:

• Just plug in the value where the poly. is evaluated: Time O(n)

Multiplication:

• Concatenate the two representations: Time O(n)

Addition:

- Need to find the roots of p(x) + q(x)
- For polynomials of degree > 4, this is not possible by using basic arithmetic operations $(+, -, \cdot, /, \sqrt[a]{b})$
- In the usual computational model impossible
 - Numerically, the roots can be computed to arbitrary precision

Operations: Point-Value Representation

$$p = \{ (x_0, p(x_0)), \dots, (x_{n-1}, p(x_{n-1})) \}$$

$$q = \{ (x_0, q(x_0)), \dots, (x_{n-1}, q(x_{n-1})) \}$$

• Note: we use the same points x_0, \dots, x_n for both polynomials

Addition:

$$p + q = \{ (x_0, p(x_0) + q(x_0)), \dots, (x_{n-1}, p(x_{n-1}) + q(x_{n-1})) \}$$

• Time: *O*(*n*)

Multiplication:

$$p \cdot q = \{ (x_0, p(x_0) \cdot q(x_0)), \dots, (x_{2n-2}, p(x_{2n-2}) \cdot q(x_{2n-2})) \}$$

• Time: *O*(*n*)

Evaluation: Polynomial interpolation can be done in $O(n^2)$

Algorithm Theory, WS 2019/20

Fabian Kuhn

Operations on Polynomials

Cost depending on representation:

	Coefficient	Roots	Point-Value
Evaluation	0 (n)	0 (n)	$O(n^2)$
Addition	0 (n)	∞	0 (n)
Multiplication	0 (n ^{1.58})	0 (n)	O (n)

Faster Polynomial Multiplication?

Multiplication is fast when using the point-value representation

Idea to compute $p(x) \cdot q(x)$ (for polynomials of degree < n):

Coefficients to Point-Value Representation

Given: Polynomial p(x) by the coefficient vector $(a_0, a_1, ..., a_{N-1})$

- **Goal:** Compute p(x) for all x in a given set X
 - Where X is of size |X| = N
 - Assume that N is a power of 2

Divide and Conquer Approach

- Divide p(x) of degree N 1 (N is even) into 2 polynomials of degree $N/_2 1$ differently than in Karatsuba's algorithm
- $p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1}$ (even coeff.) $p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1}$ (odd coeff.)

Coefficients to Point-Value Representation

FREIBURG

Goal: Compute p(x) for all x in a given set X of size |X| = N

• Divide p(x) of degr. N - 1 into 2 polynomials of degr. $N/_2 - 1$

$$p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1} \quad \text{(even coeff.)}$$

$$p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1} \quad \text{(odd coeff.)}$$

Let's first look at the "combine" step:

 We need to compute p(x) for all x ∈ X after recursive calls for polynomials p₀ and p₁:

Coefficients to Point-Value Representation

Goal: Compute p(x) for all x in a given set X of size |X| = N

- Divide p(x) of degr. N 1 into 2 polynomials of degr. $N/_2 1$
 - $p_0(y) = a_0 + a_2 y + a_4 y^2 + \dots + a_{N-2} y^{N/2-1} \quad \text{(even coeff.)}$ $p_1(y) = a_1 + a_3 y + a_5 y^2 + \dots + a_{N-1} y^{N/2-1} \quad \text{(odd coeff.)}$

Let's first look at the "combine" step:

$$\forall x \in X: \quad p(x) = p_0(x^2) + x \cdot p_1(x^2)$$

- Recursively compute $p_0(y)$ and $p_1(y)$ for all $y \in X^2$ - Where $X^2 \coloneqq \{x^2 : x \in X\}$
- Generally, we have $|X^2| = |X|$

Analysis

Recurrence formula for the given algorithm:

Faster Algorithm?

• In order to have a faster algorithm, we need $|X^2| < |X|$

Choice of *X*

• Select points x_0, x_1, \dots, x_{N-1} to evaluate p and q in a clever way

Consider the *N* complex roots of unity:

• Cancellation Lemma:

For all integers n > 0, $k \ge 0$, and d > 0, we have:

$$\omega_{dn}^{dk} = \omega_n^k$$
, $\omega_n^{k+n} = \omega_n^k$

• Proof:

Properties of the Roots of Unity

Claim: If
$$X = \left\{ \omega_{2k}^{i} : i \in \{0, ..., 2k - 1\} \right\}$$
, we have
 $X^{2} = \left\{ \omega_{k}^{i} : i \in \{0, ..., k - 1\} \right\}$, $|X^{2}| = \frac{|X|}{2}$

Analysis

New recurrence formula:

$$T(N, |X|) \le 2 \cdot T(\frac{N}{2}, \frac{|X|}{2}) + O(N + |X|)$$

Faster Polynomial Multiplication?

Idea to compute $p(x) \cdot q(x)$ (for polynomials of degree < n):

p, q of degree n - 1, n coefficients

Evaluation at points $\omega_{2n}^0, \omega_{2n}^1, \dots, \omega_{2n}^{2n-1}$

2 × 2*n* point-value pairs $(\omega_{2n}^k, p(\omega_{2n}^k))$ and $(\omega_{2n}^k, q(\omega_{2n}^k))$

Point-wise multiplication

2*n* point-value pairs $\left(\omega_{2n}^{k}, p(\omega_{2n}^{k})q(\omega_{2n}^{k})\right)$

Interpolation

p(x)q(x) of degree 2n - 2, 2n - 1 coefficients