Chapter 2
Greedy Algorithms

Algorithm Theory
WS 2019/10

Fabian Kuhn

UNI

FREIBURG

Greedy Algorithms

UNI
FREIBURG

* No clear definition, but essentially:

In each step make the choice that
looks best at the moment!
———————

 Depending on problem, greedy algorithms can give
— Optimal solutions
— Close to optimal solutions
— No (reasonable) solutions at all

* Ifit works, very interesting approach!

— And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Interval Scheduling

UNI
FREIBURG

* Given: Set of intervals, e.g.
[0,10],[1,3],[1,4],13,5],[4,71,[5,8],[5,121,[7,9],[9,12],[8,10],[11,14],[12,14]

[0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

* Goal: Select largest possible non-overlapping set of intervals

— For simplicity: overlap at boundary ok
(i.e., [4,7] and [7,9] are non-overlapping)

 Example: Intervals are room requests; satisfy as many as possible

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Greedy Algorithms

UNI

FREIBURG

* Several possibilities...
Choose first available interval:

[0,10] [11,14]
;;451/ 67| 478 | Ao42)
,4]) [/5xsj [8710] [12,14]
g5 | [5,12]

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Choose shortest available interval:

[1,7] [8,14]
[6,9]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI

Greedy Algorithms

FREIBURG

Choose available request with earliest finishing time:

d
// [0,10] (11,14]
[1,3] / [4,7] 7,91 | [9,12] j
(141 58] | [8,10] [12,14]
7
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R := set of all requests; S := empty set;
while R is not empty do

choose r € R with smallest finishing time

addrtoS

delete all requests from R that are not compatible with r
end // S is the solution

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

UNI

Earliest Finishing Time is Optimal

FREIBURG

* Let O be the set of intervals of an optimal solution

e Can we showthat$ = 07?

— No...
[0,10] [11,14]
[1,3] 471 [7,9]1 @ [9,12]
[1,4] [5,8] [8,10] [12,14]
[3,5] [5,12]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gred/ Solution Alternative Optimal Sol.
6“‘2:\»@13-00,\%
* Show that |S| = |0|. 1S12 o) 4 Mo A O
— - “7

—_—

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

need I show &Lal'

Greedy Stays Ahead <

z (0]

UNI
FREIBURG

 Greedy solution S:

[alJ 121] [az, bZ

- las) b,

where b; < a;,4

* Any other solution O (e g.,an optlmal sol.):
- [ajop biof]

laz, b1], laz, b],

where b; < a; 4

* Definde b- = oo for i > [S] and b- = oo fori > |0
Claim: Foralli = 1, b; < b = S| Z 0] becauwse 'JD\O‘
[0,10] [11,14]

[1,3] 4,71 —~ [7,91 = [9,12]
[1,4] ~[58] | [810] [12,14]
3,5] [5,12]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Algorithm Theory, WS 2019/20 Fabian Kuhn

’r

)

<

UNI

Greedy Stays Ahead

FREIBURG

Claim: Foralli > 1, b; < b/

_———

Proof (by induction on i):

Dase: =) bsb V

»
sk - ¢ LW b €D
b?“a.‘ LY .
O s N ﬁ_‘; (‘ ¢ \‘ VlQ.OJ <}o sLow)e-wl b; < L‘"
b:., rel \m'l‘cvc.\\\s av&(«uzé* 5\4@(3 q,a'
/4 b, n SA'(? v because
S S Y (| (\ bi_‘ . br_‘s qt

—

‘& 'b?:b. J ?mAa Q(B on-u,(o(Fnﬂu

. e . . . @A 1
Corollary: Earliest finishing time algorithm is optimal. Yo

/ .

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Weighted Interval Scheduling

UNI
f

FREIBURG

Weighted version of the problem:
* Each interval has a weight
* Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:
* Algorithm needs to look at weights

* Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:
 We will see an algorithm using another design technique later.

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Interval Partitioning

* Schedule all intervals: Partition intervals into as few as
possible non-overlapping sets of intervals

— Assign intervals to different resources, where each resource needs to
get a non-overlapping set

 Example:
— Intervals are requests to use some room during this time
— Assign all requests to some room such that there are no conflicts

— Use as few rooms as possible

* Assignment to 3 resources:

[1,3] [4,7] [9,12]
[1,4] [5,8] [9,11] [12,14]
[2,4] [5,12]

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Depth

Depth of a set of intervals:
 Maximum number passing over a single point in time

* Depth ofIinitiaI example is 4 (e.g., [0,10],[4,7],[5,8],[5,12]):
| [0,10] [11,14]
[1,3] [4,7] [7,9] [9,12]
[1,4] [4,8] [8,10] [12,14]
[3,5] [5,12]
0 112 3 4 5 6lt7 8 9 10 11 12 13 14

Lemma: Number of resources needed = depth

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Greedy Algorithm

UNI
FREIBURG

Can we achieve a partition into “depth” non-overlapping sets?

* Would mean that the only obstacles to partitioning are local...

Algorithm:

* Assign labels 1, ... to the intervals; same label = non-overlapping
—

1. sortintervals by starting time: Iy, I, ..., I,

2. fori=1tondo

assign smallest possible label to I;
(possible label: different from conflicting intervals [I;, j < i)

4. end

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Interval Partitioning Algorithm

Example: |

2 S &
 Labels:
{,
\ [0,10] | 0 [11,14]
211,3] | I 471 [8(7,9] |° [9,12]
3 [1,4] e '[58] 9[8,10] “12,14]
1 [3,5] |? | [5,12]

UNI
f

FREIBURG

| | | | | | ‘
" I I

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
* Number of labels = depth =4

Algorithm Theory, WS 2019/20 Fabian Kuhn

Interval Partitioning: Analysis

UNI
FREIBURG

Theorem:

a) Let d be the depth of the given set of intervals. The
algorithm assigns a label from 1, ..., d to each interval.

b) Sets with the same label are non-overlapping

Proof:
* b) holds by construction

* Fora):
— Allintervals [;, j < i overlapping with [;, overlap at the beginning of J;
= — c 3
= \ 550(~| Ow\ar@hé Yudovels
I I—

T’) AV' <
/

— At most d — 1 such intervals = some label in {1, ..., d} is available.
_ = =

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

Traveling Salesperson Problem (TSP)

Input:
* SetV of n nodes (points, cities, locations, sites)
* Distance functiond:V XV — R, i.e., d(u, v): dist. from u to v

» Distances usually symmetric, asymm. distances = asymm. TSP

Vi Vs Vaer Vi

e)
o - - . 6 ®

Solution: A R,

e Ordering/permutation vy, v,, ..., v, of nodes
* Length of TSP path: Z’f:_ll d(v;, vi41) =—
* Length of TSP tour: d(v,, v{) + Z?;ll d(v;, viyq1)

Goal:
 Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

UNI
f

FREIBURG

UNI
f

FREIBURG

Optimal Tour:

Length: 86

Greedy Algorithm?

Length: 121

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Nearest Neighbor (Greedy)

UNI

FREIBURG

* Nearest neighbor can be arbitrarily bad, even for TSP paths

Algorithm Theory, WS 2019/20 Fabian Kuhn

17

TSP Variants

UNI
FREIBURG

e Asymmetric TSP W

o
— arbitrary non-negative distance/cost function \Y
— most general, nearest neighbor arbitrarily bad
— NP-hard to get within any bound of optimum

* Symmetric TSP

— arbitrary non-negative distance/cost function

— nearest neighbor arbitrarily bad
— NP-hard to get within any bound of optimum

. (I Metric TSP ﬂ

— distance function defines metric space: symmetric, non-negative,
triangle inequality: d(u, v) < d(u, w) + d(w, v)

— possible to get close to optimum (we will later see factor 3/,)

— what about the nearest neighbor algorithm? -

S

Algorithm Theory, WS 2019/20 Fabian Kuhn 18

Metric TSP, Nearest Neighbor

UNI

FREIBURG

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Algorithm Theory, WS 2019/20 Fabian Kuhn

19

Metric TSP, Nearest Neighbor .

UNI
FREIBURG

Optimal TSP tour: 2.3

Nearest-Neighbor TSP tour:
cost =24

luw'w_d red QJ}Q$,‘ Somt Gerow 9 + | ‘ 20

200 eﬂy.& 2 warked red eo?)gs
@ C 4

{ o U
ovT ?W%.ui) of . (NK)

’&w\w‘ud red eo'yzs:
ol leagh lal | f Ve ved s
ark Mar\u,d

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

Metric TSP, Nearest Neighbor

|
FREIBURG

UNI

]Tl'riangle InequalityD
optimal tour on remaining nodes @

overall g?mal tour f \A1.7 » 7

2.1

led redl | Ki, S
Cﬁbum Z nar N (

——

()
<O | 1.3

warked red £ OV @ 3.4 9

Algorithm Theory, WS 2019/20 Fabian Kuhn 21

Metric TSP, Nearest Neighbor

UNI

FREIBURG

Analysis works in phases:

* |n each phase, assigh each optimal edge to some greedy edge
— Cost of greedy edge < cost of optimal edge

* Each greedy edge gets assigned < 2 optimal edges
— At least half of the greedy edges get assigned

* At end of phase:
Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

* Triangle inequality: remaining opt. solution < overall opt. sol.

* Cost of greedy edges assigned in each phase < opt. cost

* Number of phases < log, n
%
— +1 for last greedy edge in tour @

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

Metric TSP, Nearest Neighbor

UNI

FREIBURG

* Assume:
NN: cost of greedy tour, OPT: cost of optimal tour
N ‘}gf’r(-"
\as‘) b
* We have shown: | f« “
NN <1+I1 y
OPT ~ ' 2627

amfox; W&J"M M.(10

NNV = (| 1’-@1017* oOPT
 Example of an approximation algorithm

« We will later see a 3/,-approximation algorithm for metric TSP

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Back to Scheduling

UNI
FREIBURG

* Given: n requests / jobs with deadlines:

length t; = 10

|deadline d; =11
=

|d, =10

|d; =13
Id4=7

O 1 2 3 4 5 6

/7 8 9 10 11 12 13 14

e Goal: schedule all jobs with minimum lateness L
— Schedule: s(i), f (i): start and finishing times of request i

Note: f(i) = s(i) + ¢;

e Lateness L := max {O, max{f (i) — di}} = way [
) l (‘

LL = lMax{Ol ,e(i) —d‘-’i

— largest amount of time by which some job finishes late

 Many other natural objective functions possible...

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

Greedy Algorithm?

UNI
f

FREIBURG

Schedule jobs in order of increasing length?
* Ignores deadlines: seems too simplistic...

* E.g.:
t; = 10 | deadline d; = 10
=
=
Schedule:| t, = 2 t; =10

Schedule by increasing slack time?
e Should be concerned about slack time: d; — t;

t; = 10 | deadline d; = 10

-

t2=2 Id2=3

-

Schedule: t; = 10 t, = 2

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

Greedy Algorithm

UNI
FREIBURG

Schedule by earliest deadline?
* Schedule in increasing order of d;
* Ignores lengths of jobs: too simplistic?

e Earliest deadline is optimall!

Algorithm:
* Assume jobs are reordered such thatd; < d, < --- < d,

 Start/finishing times:
— First job starts at time s(1) = 0
— Duration of job iist;: f(i) = s(i) + t;
— No gaps between jObSZRi + 1) = f(i)

(idle time: gaps in a schedule = alg. gives schedule with no idle time)

Algorithm Theory, WS 2019/20 Fabian Kuhn 26

Example

FREIBURG

UNI

Jobs ordered by deadline:

t; =5 |d, =7
t, =3 |d, =10
ty =7 ld, =11
t; =3 |d; =13
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Schedule:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lateness: job 1: 0, job 2: 0, job 3: 4, job 4: 5

Algorithm Theory, WS 2019/20 Fabian Kuhn

27

Basic Facts

UNI
f

FREIBURG

1. There is an optimal schedule with no idle time
— Canjust schedule jobs earlier...

2. Inversion: Job i scheduled before job j if d; > d;
Schedules with no inversions have the same maximum lateness

g /(/g:/z/:/-z%(/m] - (
e — W/—ﬁ/* — % —
oA =1 A= 2| A= 20
=

Algorithm Theory, WS 2019/20 Fabian Kuhn 28

Earliest Deadline is Optimal

UNI

Theorem:
There is an optimal schedule O with no inversions and no idle time.

Proof:
e Consider some schedule O’ with no idle time

* If O’ has inversions, 3 pair (i, j), s.t. i is scheduled immediately
before j and d; < d; 4> d; Ao 70!))'

' (_" - - -M_D_J \ ;" ‘
3 7

* Claim: Swapping i and j gives a schedule with
1. Fewer inversions

2. aximum lateness no larger than in O’

Algorithm Theory, WS 2019/20 Fabian Kuhn 29

FREIBURG

UNI

Earliest Deadline is Optimal

FREIBURG

Claim:O(Swapping i and j: maximum lateness no larger than in O’
d- ‘ '

J (l / d) J.
. - Y ‘ ‘)
. l\ (ir— —=
(|
- %
—~y ¢ |
L — | —7 |
J

Algorithm Theory, WS 2019/20 Fabian Kuhn 30

Earliest Deadline is Optimal

UNI

FREIBURG

Claim: Swapping i and j: maximum lateness no larger than in O’

Algorithm Theory, WS 2019/20 Fabian Kuhn

31

Exchange Argument

UNI
f

FREIBURG

* General approach that often works to analyze greedy algorithms

e Start with any solution

* Define basic exchange step that allows to transform solution into
a new solution that is not worse

* Show that exchange step moves solution closer to the solution
produced by the greedy algorithm

* Number of exchange steps to reach greedy solution should be
finite...

Algorithm Theory, WS 2019/20 Fabian Kuhn 32

