Chapter 2
 Greedy Algorithms

Algorithm Theory WS 2019/10

Fabian Kuhn

Greedy Algorithms

- No clear definition, but essentially:

In each step make the choice that looks best at the moment!

- Depending on problem, greedy algorithms can give
- Optimal solutions
- Close to optimal solutions
- No (reasonable) solutions at all
- If it works, very interesting approach!
- And we might even learn something about the structure of the problem

Goal: Improve understanding where it works (mostly by examples)

Interval Scheduling

- Given: Set of intervals, e.g. $[0,10],[1,3],[1,4],[3,5],[4,7],[5,8],[5,12],[7,9],[9,12],[8,10],[11,14],[12,14]$

- Goal: Select largest possible non-overlapping set of intervals
- For simplicity: overlap at boundary ok (i.e., $[4,7]$ and $[7,9]$ are non-overlapping)
- Example: Intervals are room requests; satisfy as many as possible

Greedy Algorithms

- Several possibilities...

Choose first available interval:

Choose shortest available interval:

Greedy Algorithms

Choose available request with earliest finishing time:

$R:=$ set of all requests; $S:=$ empty set;
while R is not empty do
choose $r \in R$ with smallest finishing time
add r to S
delete all requests from R that are not compatible with r
end
// S is the solution

Earliest Finishing Time is Optimal

- Let \underline{O} be the set of intervals of an optimal solution
- Can we show that $S=O$?
- No...

Greedy Stays Ahead need oshoum thent $|s| \geqslant(0)$

- Greedy solution S :

$$
\left[a_{1}, \underline{b_{1}}\right],\left[a_{2}, \underline{b_{2}}\right], \ldots,\left[a_{|S|}, b_{|S|}\right], \quad \text { where } \underline{b_{i} \leq a_{i+1}}
$$

- Any other solution O (e.g., an optimal sol.):

$$
\left[a_{1}^{*}, b_{1}^{*}\right],\left[a_{2}^{*}, b_{2}^{*}\right], \ldots,\left[a_{|O|}^{*}, b_{|O|}^{*}\right], \quad \text { where } b_{i}^{*} \leq a_{i+1}^{*}
$$

- Definde $\underline{\underline{b_{i}}}:=\infty$ for $\underline{i>|S|}$ and $b_{i}^{*}:=\infty$ for $i>|O|$

Claim: For all $i \geq 1, \underline{b_{i} \leq b_{i}^{*}} \longrightarrow|S| \geq|0|$ because $b_{(01} \leq b_{(0)}^{*}<\infty$

Greedy Stays Ahead
Claim: For all $i \geq 1, b_{i} \leq b_{i}^{*}$
Proof (by induction on i):
base: $i=1 \quad b_{1} \leq b_{1}^{*}$
step: $i-1 \rightarrow i \quad$ I.H. $: D_{i-1} \leq D_{i-1}^{*}$

need to show that $b_{i} \leq b_{i}^{*}$
red interval is available to greedy alg. in step i because

$$
\begin{aligned}
& b_{i-1} \leq b_{i-1}^{*} \leq a_{i}^{*} \\
& b_{i}^{*}<b_{i}, \text { greedy ald. could popper }
\end{aligned}
$$

Corollary: Earliest finishing time algorithm is optimal.

Weighted Interval Scheduling

Weighted version of the problem:

- Each interval has a weight
- Goal: Non-overlapping set with maximum total weight

Earliest finishing time greedy algorithm fails:

- Algorithm needs to look at weights
- Else, the selected sets could be the ones with smallest weight...

No simple greedy algorithm:

- We will see an algorithm using another design technique later.

Interval Partitioning

- Schedule all intervals: Rartition intervals into as few as possible non-overlapping sets of intervals
- Assign intervals to different resources, where each resource needs to get a non-overlapping set
- Example:
- Intervals are requests to use some room during this time
- Assign all requests to some room such that there are no conflicts
- Use as few rooms as possible
- Assignment to 3 resources:

Depth

Depth of a set of intervals:

- Maximum number passing over a single point in time
- Depth of initial example is 4 (e.g., $[0,10],[4,7],[5,8],[5,12]):$

Lemma: Number of resources needed \geqq depth

Greedy Algorithm

Can we achieve a partition into "depth" non-overlapping sets?

- Would mean that the only obstacles to partitioning are local...

Algorithm:

- Assign labels 1, ... to the intervals; same label \rightarrow non-overlapping

1. sort intervals by starting time: $I_{1}, I_{2}, \ldots, I_{n}$
2. for $i=1$ to n do
3. assign smallest possible label to I_{i} (possible label: different from conflicting intervals $I_{j}, j<i$)
4. end

Interval Partitioning Algorithm

Example:

- Labels:

- Number of labels = depth $=4$

Interval Partitioning: Analysis

Theorem:

a) Let d be the depth of the given set of intervals. The algorithm assigns a label from $1, \ldots, d$ to each interval.
b) Sets with the same label are non-overlapping

Proof:

- b) holds by construction
- For a):
- All intervals $I_{j}, j<i$ overlapping with I_{i}, overlap at the beginning of I_{i}

- At most $d-1$ such intervals \rightarrow some label in $\underline{\underline{\{1, \ldots, d\}}}$ is available.

Traveling Salesperson Problem (TSP)

Input:

- Set \underline{V} of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \rightarrow \mathbb{R}$, i.e., $\underline{d(u, v)}$: dist. from u to v
- Distances usually symmetric, asymm. distances \rightarrow asymm. TSP

Solution:

- Ordering/permutation $v_{1}, v_{2}, \ldots, v_{n}$ of nodes
- Length of TSP path: $\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right) \longleftarrow$
- Length of TSP tour: $d\left(v_{n}, v_{1}\right)+\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right) \longleftarrow$

Goal:

- Minimize length of TSP path or TSP tour

Example

Nearest Neighbor (Greedy)

- Nearest neighbor can be arbitrarily bad, even for TSP paths

TSP Variants

- Asymmetric TSP
- arbitrary non-negative distance/cost function
- most general, nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum

- Symmetric TSP
- arbitrary non-negative distance/cost function
- nearest neighbor arbitrarily bad
- NP-hard to get within any bound of optimum
- Metric TSP
- distance function defines metric space: symmetric, non-negative, triangle inequality: $d(u, v) \leq d(u, w)+d(w, v)$
- possible to get close to optimum (we will later see factor $3 / 2$)
- what about the nearest neighbor algorithm?

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:

Metric TSP, Nearest Neighbor

Optimal TSP tour:

Nearest-Neighbor TSP tour:
cost $=24$
marked red edges: some arrow to it
green edges $\geqslant \underbrace{\text { marked red edges }}$ OPT
\#marled red edges: at least half of the red edges are marked

Metric TSP, Nearest Neighbor

Triangle Inequality:

optimal tour on remaining nodes

green \geqslant marled red
SOPT

marled red \leq OPT

Metric TSP, Nearest Neighbor

Analysis works in phases:

- In each phase, assign each optimal edge to some greedy edge
- Cost of greedy edge \leq cost of optimal edge
- Each greedy edge gets assigned ≤ 2 optimal edges
- At least half of the greedy edges get assigned
- At end of phase:

Remove points for which greedy edge is assigned
Consider optimal solution for remaining points

- Triangle inequality: remaining opt. solution \leq overall opt. sol.
- Cost of greedy edges assigned in each phase \leq opt. cost
- Number of phases $\leq \underline{\underline{\log _{2} n}}$
-+1 for last greedy edge in tour

Metric TSP, Nearest Neighbor

- Assume:

NN: cost of greedy tour, OPT: cost of optimal tour

- We have shown:

$$
\begin{aligned}
& N N \leq\left(1+\log _{2} n\right) \cdot \text { OPT }
\end{aligned}
$$

- Example of an approximation algorithm
- We will later see a $3 / 2$-approximation algorithm for metric TSP

Back to Scheduling

- Given: n requests / jobs with deadlines:

- Goal: schedule all jobs with minimum lateness L
- Schedule: $s(i), f(i)$: start and finishing times of request i

$$
\text { Note: } f(i)=s(i)+t_{i} \quad L_{i}=\max \left\{0, f(i)-d_{i}\right\}
$$

- Lateness $L:=\max \left\{0, \max _{i}\left\{f(i)-d_{i}\right\}\right\}=\max _{i} L_{i}$
- largest amount of time by which some job finishes late
- Many other natural objective functions possible...

Greedy Algorithm?

Schedule jobs in order of increasing length?

- Ignores deadlines: seems too simplistic...
- E.g.:

$$
t_{1}=10 \quad{ }_{\gtrless} \text { deadline } d_{1}=10
$$

$$
t_{2}=2
$$

$$
\cdots \quad \mid d_{2}=100
$$

Schedule: $t_{2}=2$

$$
t_{1}=10
$$

Schedule by increasing slack time?

- Should be concerned about slack time: $\underline{d_{i}-t_{i}}$

Schedule:

$$
t_{1}=10
$$

$t_{2}=2$

Greedy Algorithm

Schedule by earliest deadline?

- Schedule in increasing order of d_{i}
- Ignores lengths of jobs: too simplistic?
- Earliest deadline is optimal!

Algorithm:

- Assume jobs are reordered such that $\underline{d_{1} \leq d_{2} \leq \cdots \leq d_{n}}$
- Start/finishing times:
- First job starts at time $s(1)=0$
- Duration of job i is $t_{i}: f(i)=s(i)+\underline{t_{i}}$
- No gaps between jobs: $s(i+1)=f(i)$
(idle time: gaps in a schedule \rightarrow alg. gives schedule with no idle time)

Example

Jobs ordered by deadline:

Schedule:

Lateness: job 1: 0 , job 2: 0 , job 3: 4, job 4: 5

Basic Facts

1. There is an optimal schedule with no idle time

- Can just schedule jobs earlier...

2. Inversion: Job i scheduled before job j if $\underline{d_{i}}>d_{j}$ Schedules with no inversions have the same maximum lateness

Earliest Deadline is Optimal

Theorem:

There is an optimal schedule \mathcal{O} with no inversions and no idle time.

Proof:

- Consider some schedule \mathcal{O}^{\prime} with no idle time
- If \mathcal{O}^{\prime} has inversions, \exists pair (i, j), s.t. i is scheduled immediately before j and $d_{j}<d_{i}$

$$
d_{i}>d_{j}
$$

$$
d_{i}>d_{j}
$$

- Claim: Swapping i and j gives a schedule with

1. Fewer inversions
2. Maximum lateness no larger than in \mathcal{O}^{\prime}

Earliest Deadline is Optimal

Claim: Swapping i and j : maximum lateness no larger than in \mathcal{O}^{\prime} dj

$$
d_{i}>d_{j}
$$

Earliest Deadline is Optimal

Claim: Swapping i and j : maximum lateness no larger than in \mathcal{O}^{\prime}

Exchange Argument

- General approach that often works to analyze greedy algorithms
- Start with any solution
- Define basic exchange step that allows to transform solution into a new solution that is not worse
- Show that exchange step moves solution closer to the solution produced by the greedy algorithm
- Number of exchange steps to reach greedy solution should be finite...

