Chapter 3

Dynamic Programming

Algorithm Theory WS 2019/20

Fabian Kuhn

Dynamic Programming (DP)

$$
\text { DP } \approx \text { Recursion + Memoization }
$$

Recursion: Express problem recursively in terms of
(a 'small' number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems reuse the stored solutions if the same subproblems has to be solved again

Weighted interval scheduling: subproblems $W(1), W(2), W(3), \ldots$
runtime $=$ \#subproblems \cdot time per subproblem

String Matching Problems

Edit distance:

- For two given strings \underline{A} and \underline{B}, efficiently compute the edit distance $\boldsymbol{D}(\boldsymbol{A}, \boldsymbol{B}) \quad$ (\# edit operations to transform A into B) as well as a minimum sequence of edit operations that transform A into B.
- Example: mathematician \rightarrow multiplication:

Edit Distance

Given: Two strings $A=a_{1} a_{2} \ldots a_{m}$ and $B=b_{1} b_{2} \ldots b_{n}$

Goal: Determine the minimum number $D(A, B)$ of edit operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A
c) Insert a character from string B into A

$$
\left.\begin{array}{l}
m \\
m \\
a \\
u
\end{array}\right]\left[\begin{array}{llllllllll|l|ll}
-1 & h & h & m & - & - & a & t & i & c & i & a & n \\
t & i & p & l & i & c & a & t & i & o & l_{i} & - & n
\end{array}\right.
$$

Edit Distance - Cost Model $c(a, a)=0$

- Cost for replacing character a by $b: c(\boldsymbol{a}, \boldsymbol{b}) \geq \mathbf{0}$
- Capture insert, delete by allowing $a=\underline{\varepsilon}$ or $b=\varepsilon$:
- Cost for deleting character $a: c(a, \varepsilon) \longleftarrow$ deledion of a
- Cost for inserting character $b: c(\varepsilon, b) \propto$ insetion of b
- Triangle inequality:

$$
c(a, c) \leq c(a, b)+c(b, c)
$$

\rightarrow each character is changed at most once!

- Unit cost model: $c(a, b)= \begin{cases}1, & \text { if } a \neq b \\ 0, & \text { if } a=b\end{cases}$

Recursive Structure

- Optimal "alignment" of strings (unit cost model) b.bcadfagikccm and abbagflrgikacc:

$$
\begin{aligned}
& \text { - b b c a g f al - git } k \text { c c m } \\
& a \underline{l} \underset{\ell}{l \mid r g i k a c c}-
\end{aligned}
$$

- Consists of optimal "alignments" of sub-strings, e.g.:

$$
\begin{aligned}
& \text {-bbcagfa } \\
& \text { abb-adfl }
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \text {-gik-ccm } \\
& \text { rgikacc- }
\end{aligned}
$$

- Edit distance between $A_{1, m}=a_{1} \ldots a_{m}$ and $B_{1, n}=b_{1} \ldots b_{n}$:

$$
\quad \underset{\substack{D(A, B)}}{D\left(A_{l, n}, B_{1, m}\right)}=\min _{k, \ell}\left\{\frac{\square\left(A_{1, k}, B_{1, \ell}\right)}{\underline{L}}+D\left(A_{k+1, m}, B_{\ell+1, n}\right)\right\}
$$

Computation of the Edit Distance

Let $A_{k}:=a_{1} \ldots a_{k}, B_{\ell}:=b_{1} \ldots b_{\ell}$, and
$A_{1, k} \quad B, e \quad \underline{\underline{D_{k, \ell}}}:=\underline{\underline{D\left(A_{k}, B_{\ell}\right)}}$

cost of an opt aljument of
$A_{r} \& B_{e}$

Computation of the Edit Distance

Three ways of ending an "alignment" between $\underline{A_{k}}$ and $\underline{B_{\ell}}$:

1. a_{k} is replaced by b_{ℓ} :

$$
\underline{\underline{D_{k, \ell}}}=\underline{D_{k-1, \ell-1}+c(}\left(a_{k}, b_{\ell}\right)
$$

2. a_{k} is deleted:

$$
\underline{D_{k, \ell}}=\underline{D_{k-1, \ell}}+c\left(a_{k}, \varepsilon\right)
$$

3. b_{ℓ} is inserted:

$$
D_{k, \ell}=D_{k, \ell-1}+c\left(\varepsilon, b_{\ell}\right)
$$

Computing the Edit Distance

- Recurrence relation (for $k, \ell \geq 1$)

$$
\underline{\underline{D_{k, \ell}}}=\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+c\left(a_{k}, b_{\ell}\right) \\
D_{k-1, \ell}+c\left(a_{k}, \varepsilon\right) \\
D_{k, \ell-1}+c\left(\varepsilon, b_{\ell}\right)
\end{array}\right\}=\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+1 / 0 \\
D_{k-1, \ell}+1 \\
D_{k, \ell-1}+1
\end{array}\right\}
$$

unit cost model

- Need to compute $D_{i, j}$ for all $0 \leq i \leq k, 0 \leq j \leq \ell$:

Recurrence Relation for the Edit Distance

Base cases:

unit cost

$$
\begin{array}{ll}
\underline{D_{0,0}}=D(\varepsilon, \varepsilon)=\mathbf{0} & \\
D_{0, j}=D\left(\varepsilon, B_{j}\right)=D_{0, j-1}+c\left(\varepsilon, b_{j}\right) & D_{0, j}=j \\
D_{i, 0}^{\prime-0}=D\left(A_{i}, \varepsilon\right)=D_{i-1,0}+c\left(a_{i}, \varepsilon\right) & D_{i, 0}=i
\end{array}
$$

Recurrence relation:

$$
D_{i, j}=\min \left\{\begin{array}{l}
D_{k-1, \ell-1}+c\left(a_{k}, b_{\ell}\right) \\
D_{k-1, \ell}+c\left(a_{k}, \varepsilon\right) \\
D_{k, \ell-1}+c\left(\varepsilon, b_{\ell}\right)
\end{array}\right\}
$$

Order of solving the subproblems

Algorithm for Computing the Edit Distance

Algorithm Edit-Distance
Input: 2 strings $A=a_{1} \ldots a_{m}$ and $B=b_{1} \ldots b_{n}$
Output: matrix $D=\left(D_{i j}\right)$
$1 D[0,0]:=0$;
2 for $i:=1$ to m do $D[i, 0]:=i$;
3 for $j:=1$ to n do $D[0, j]:=j$;
4 for $i:=1$ to m do
5 for $j:=1$ to n do
$6 D[i, j]:=\min \left\{\begin{array}{ll}D[i-1, j] & +1 \\ D[i, j-1] & +1 \\ D[i-1, j-1]+c\left(a_{i}, b_{j}\right)\end{array}\right\} ;$

Example

Edit Operations

Computing the Edit Operations

Algorithm Edit-Operations(i,j)
Input: matrix D (already computed)
Output: list of edit operations
1 if $i=0$ and $j=0$ then return empty list
2 if $i \neq 0$ and $D[i, j]=D[i-1, j]+1$ then
3 return Edit-Operations $(i-1, j) \circ$,delete $a_{i}{ }^{\prime}$
4 else if $j \neq 0$ and $D[i, j]=D[i, j-1]+1$ then return Edit-Operations($i, j-1$) \circ,,insert $b_{j}{ }^{\prime \prime}$

6 else $/ / D[i, j]=D[i-1, j-1]+c\left(a_{i}, b_{j}\right)$
7 if $a_{i}=b_{i}$ then return Edit-Operations $(i-1, j-1)$
8 else return Edit-Operations $(i-1, j-1) \circ$ „replace a_{i} by $b_{j}{ }^{\prime \prime}$
Initial call: Edit-Operations(m,n)

Edit Operations

Edit Distance: Summary

- Edit distance between two strings of length m and n can be computed in $O(\mathrm{mn})$ time.
- Obtain the edit operations:
- for each cell, store which rule(s) apply to fill the cell
- track path backwards from cell (m, n)
- can also be used to get all optimal "alignments"
- Unit cost model:
- interesting special case
- each edit operation costs 1

Approximate String Matching $m \ll n$

Given: strings $T=t_{1} t_{2} \ldots t_{n}$ (text) and $P=p_{1} p_{2} \ldots p_{m}$ (pattern).

Goal: Find an interval $[r, s], 1 \leq r \leq s \leq n$ such that the sub-string $T_{r, s}:=t_{r} \ldots t_{s}$ is the one with highest similarity to the pattern P :

Naive Solution:

choose the minimum
Overall: $O\left(m \cdot n^{3}\right)$
unit cost, can be more clever: $O\left(n \cdot m^{3}\right)$

Approximate String Matching

A related problem:

- For each position $\underline{\underline{s}}$ in the text and each position $\underline{\underline{i}}$ in the pattern compute the minimum edit distance $E(i, s)$ between $P_{i}=p_{1} \ldots p_{i}$ and any substring $T_{r, s}$ of T that ends at position s.

Approximate String Matching

Three ways of ending optimal alignment between T_{b} and P_{i} :

1. t_{b} is replaced by p_{i} :

$$
E_{b, i}=E_{b-1, i-1}+c\left(t_{b}, p_{i}\right)
$$

$$
\stackrel{\substack{\cos \gamma \\=E_{b-1, i-1}} \frac{T_{r, b-1}}{\sum_{P_{i-1}}} t_{b} P_{i}}{l}
$$

2. t_{b} is deleted:

$$
E_{b, i}=E_{b-1, i}+c\left(t_{b}, \varepsilon\right)
$$

3. p_{i} is inserted:

$$
\underline{E_{b, i}}=\underline{E_{b, i-1}}+\underline{c\left(\varepsilon, p_{i}\right)}
$$

Approximate String Matching

Recurrence relation (unit cost model):

$$
E_{b, i}=\min \left\{\begin{array}{l}
E_{b-1, i-1}+1 / \underline{0} \\
E_{b-1, i}+1 \\
E_{b, i-1}+1
\end{array}\right\}
$$

Base cases:

$$
\begin{aligned}
& E_{0,0}=0 \\
& E_{0, \underline{i}}=\underline{i} \\
& E_{i, 0}=0
\end{aligned}
$$

Approximate String Matching

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in $O(m n)$ time
- Get matching(s):
- Start from minimum entry/entries in bottom row
- Follow path(s) to top row
- Algorithm to compute $E(b, i)$ identical to edit distance algorithm, except for the initialization of $E(b, 0)$

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

Global vs. Local Alignment:

- Global alignment: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1 (patter) with sub-sequence of sequence 2 (text)

