

Chapter 3 Dynamic Programming

Algorithm Theory WS 2019/20

Fabian Kuhn

 $\text{DP} \approx \text{Recursion} + \text{Memoization}$

Recursion: Express problem *recursively* in terms of (a 'small' number of) *subproblems* (of the same kind)

Memoize: Store solutions for subproblems reuse the stored solutions if the same subproblems has to be solved again

Weighted interval scheduling: subproblems W(1), W(2), W(3), ...

runtime = #subproblems \cdot time per subproblem

Edit distance:

- For two given strings <u>A</u> and <u>B</u>, efficiently compute the edit distance D(A, B) (# edit operations to transform A into B) as well as a minimum sequence of edit operations that transform A into B.
- **Example:** mathematician \rightarrow multiplication:

Edit Distance

Given: Two strings $A = a_1 a_2 \dots a_m$ and $B = b_1 b_2 \dots b_n$

Goal: Determine the minimum number D(A, B) of edit operations required to transform A into B

Edit operations:

- a) Replace a character from string A by a character from B
- **b) Delete** a character from string *A*
- c) Insert a character from string *B* into *A*

Edit Distance – Cost Model C(a, a) = O

- Cost for **replacing** character a by $b: c(a, b) \ge 0$
- Capture insert, delete by allowing $a = \underline{\varepsilon}$ or $b = \underline{\varepsilon}$:
 - Cost for deleting character $a: c(a, \varepsilon) \leftarrow deletion of q$
 - Cost for inserting character $b: c(\varepsilon, b)$ insertion of b
- Triangle inequality:

 $c(a,c) \le c(a,b) + c(b,c)$

 \rightarrow each character is changed at most once!

• Unit cost model:
$$c(a,b) = \begin{cases} 1, & \text{if } a \neq b \\ 0, & \text{if } a = b \end{cases}$$

Recursive Structure

Optimal "alignment" of strings (unit cost model)
 bbcadfagikccm and abbagflrgikacc:

k

- Consists of optimal "alignments" of sub-strings, e.g.:

 -bbcagfa
 abb-adfl
 and
 rgikacc
- Edit distance between $A_{1,m} = a_1 \dots a_m$ and $B_{1,n} = b_1 \dots b_n$:

$$D(A,B) = \min_{\substack{k,\ell} \\ (A_{1,k}, B_{1,\ell})} + D(A_{k+1,m}, B_{\ell+1,n})$$

$$D(A_{1,k}, B_{1,\ell}) + D(A_{k+1,m}, B_{\ell+1,n})$$

$$D(A_{1,k}, B_{1,\ell}) + D(A_{k+1,m}, B_{\ell+1,n})$$
Algorithm Theory, WS 2019/20 Fabian Kuhn

Computation of the Edit Distance

Algorithm Theory, WS 2019/20

Fabian Kuhn

Computation of the Edit Distance

Three ways of ending an "alignment" between A_k and B_ℓ :

1.
$$a_k$$
 is replaced by b_ℓ :
 $D_{k,\ell} = D_{k-1,\ell-1} + c(a_k, b_\ell)$

2. a_k is deleted:

$$\underline{\underline{D}_{k,\ell}} = \underline{\underline{D}_{k-1,\ell}} + c(a_k,\varepsilon)$$

3. b_{ℓ} is inserted:

$$D_{k,\ell} = D_{k,\ell-1} + c(\varepsilon, b_\ell)$$

Computing the Edit Distance

FREIBURG

1

• Recurrence relation (for $k, \ell \geq 1$)

$$\underline{D_{k,\ell}} = \min \left\{ \begin{matrix} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{matrix} \right\} = \min \left\{ \begin{matrix} D_{k-1,\ell-1} + 1 \ D_{k-1,\ell} + 1 \\ D_{k,\ell-1} + 1 \end{matrix} \right\}$$
unit cost model

• Need to compute $D_{i,j}$ for all $0 \le i \le k$, $0 \le j \le \ell$:

Recurrence Relation for the Edit Distance

Base cases:

unit cost

Recurrence relation:

$$D_{i,j} = \min \begin{cases} D_{k-1,\ell-1} + c(a_k, b_\ell) \\ D_{k-1,\ell} + c(a_k, \varepsilon) \\ D_{k,\ell-1} + c(\varepsilon, b_\ell) \end{cases}$$

Order of solving the subproblems

Algorithm Theory, WS 2019/20

Fabian Kuhn

Algorithm for Computing the Edit Distance

Algorithm *Edit-Distance* **Input:** 2 strings $A = a_1 \dots a_m$ and $B = b_1 \dots b_n$ **Output:** matrix $D = (D_{ii})$ 1 D[0,0] = 0;2 for $i \coloneqq 1$ to m do $D[i, 0] \coloneqq i$; 3 for $j \coloneqq 1$ to n do $D[0, j] \coloneqq j$; 4 for $i \coloneqq 1$ to m do 5 for $i \coloneqq 1$ to n do 6 $D[i,j] \coloneqq \min \begin{cases} D[i-1,j] + 1 \\ D[i,j-1] + 1 \\ D[i-1,j-1] + c(a_i,b_j) \end{cases};$

Edit Operations

Computing the Edit Operations

Algorithm Edit-Operations(i, j) Input: matrix D (already computed) Output: list of edit operations

- 1 if i = 0 and j = 0 then return empty list
- 2 if $i \neq 0$ and D[i, j] = D[i 1, j] + 1 then
- 3 **return** *Edit-Operations* $(i 1, j) \circ$ "delete a_i "
- 4 else if $j \neq 0$ and D[i, j] = D[i, j 1] + 1 then
- 5 **return** *Edit-Operations*(i, j 1) ° "insert b_j "
- 6 else // $D[i,j] = D[i-1,j-1] + c(a_i,b_j)$
- 7 **if** $a_i = b_i$ **then return** *Edit-Operations*(i 1, j 1)
- 8 else return *Edit-Operations* $(i 1, j 1) \circ$ "replace a_i by b_j "

Initial call: *Edit-Operations(m,n)*

Edit Operations

Edit Distance: Summary

- FREBURG
- Edit distance between two strings of length m and n can be computed in O(mn) time.
- Obtain the edit operations:
 - for each cell, store which rule(s) apply to fill the cell
 - track path backwards from cell (m, n)
 - can also be used to get all optimal "alignments"
- Unit cost model:
 - interesting special case
 - each edit operation costs 1

Approximate String Matching Merer

Given: strings $T = \underbrace{t_1 t_2 \dots t_n}_{(\underline{\text{text}})}$ and $P = \underbrace{p_1 p_2 \dots p_m}_{(\underline{\text{pattern}})}$.

Goal: Find an interval $[r, s], 1 \le r \le s \le n$ such that the sub-string $T_{r,s} \coloneqq t_r \dots t_s$ is the one with highest similarity to the pattern P:

Approximate String Matching

Approximate String Matching

A related problem:

• For each position \underline{s} in the text and each position \underline{i} in the pattern compute the minimum edit distance $\underline{E(i,s)}$ between $P_i = p_1 \dots p_i$ and any substring $T_{r,s}$ of T that ends at position s.

2. t_b is deleted:

1. t_h is replaced by p_i :

$$E_{b,i} = E_{b-1,i} + c(t_b, \varepsilon)$$

 $E_{b,i} = E_{b-1,i-1} + c(t_b, p_i)$

3. p_i is inserted:

$$\underline{E_{b,i}} = \underline{E_{b,i-1}} + \underline{c(\varepsilon, p_i)}$$

Three ways of ending optimal alignment between T_h and P_i :

Fabian Kuhn

$$\frac{|r,b-1|}{E_{b-1},i-1} + \frac{|r,b-1|}{P_{i-1}} + \frac{|r,b-1|}{P_{i-1}} + \frac{|r,b-1|}{P_{i-1}} + \frac{|r,b-1|}{P_{i}} + \frac{|r,b-1|}{P$$

FREIBURG

Approximate String Matching

Recurrence relation (unit cost model):

$$E_{b,i} = \min \left\{ \begin{array}{l} E_{b-1,i-1} + 1 / 0 \\ E_{b-1,i} + 1 \\ E_{b,i-1} + 1 \end{array} \right\}$$

Base cases:

Approximate String Matching

FREIBURG

- Optimal matching consists of optimal sub-matchings
- Optimal matching can be computed in O(mn) time
- Get matching(s):
 - Start from minimum entry/entries in bottom row
 - Follow path(s) to top row
- Algorithm to compute E(b, i) identical to edit distance algorithm, except for the initialization of E(b, 0)

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid sequences.

Global vs. Local Alignment:

- *Global alignment*: find optimal alignment of 2 sequences
- Local alignment: find optimal alignment of sequence 1 (patter) with sub-sequence of sequence 2 (text)