UNI

"
Chapter 3

Dynamic Programming

FREIBURG

Algorithm Theory
WS 2019/20

Fabian Kuhn

Dynamic Programming (DP)

UNI
f

FREIBURG

DP =~ Recursion + Memoization

Recursion: Express problem recursively in terms of
(a ‘small’ number of) subproblems (of the same kind)

Memoize: Store solutions for subproblems
reuse the stored solutions if the same subproblems

has to be solved again

Weighted interval scheduling: subproblems W (1), W (2), W (3), ...

runtime = #subproblems - time per subproblem

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

String Matching Problems

Edit distance:

* For two given strings A and B, efficiently compute the
edit distance D(A, B) (# edit operations to transform A4 into B)

as well as a minimum sequence of edit operations that
transform A into B.

* Example: mathematician = multiplication:

ml{l_xf\ip{l_xi\tio//n

1 1c 0 o

ST

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Edit Distance

UNI
f

FREIBURG

Given: Two strings A = a,a, ...a,;, and B = b1b, ... b,

Goal: Determine the minimum number D (4, B) of edit
operations required to transform A into B

Edit operations:

a) Replace a character from string A by a character from B
b) Delete a character from string A

c) Insert a character from string B into A

a—them——atician)l\ .
ufllit 1 p 1l 1 cati1oij-\-n —

Algorithm Theory, WS 2019/20 Fabian Kuhn

m
m

Edit Distance — Cost Model ccq,» =0

UNI

FREIBURG

* Cost for replacing character a by b: c(a,b) = 0

* Capture insert, delete by allowinga = corb = ¢:
— Cost for deleting character a: c(a, £) <— Laled>~ V{- q
— Cost for inserting character b: ¢(&,b) =— \wsesdiin % b

* Triangle inequality:

c(a,c) <c(a,b) +c(b,c)

— each character is changed at most once!

* Unit cost model]{c(a,b) = {é gg i Z }

Algorithm Theory, WS 2019/20 Fabian Kuhn

Recursive Structure

UNI
f

FREIBURG

* Optimal “alignment” of strings (unit cost model)
bbcadfagikcem and abbagflrgikacc:

f al— g1 k - ccm
fllr gikacec-

C

b b a
a b b - a

* Consists of optimal “alignments” of sub-strings, e.g.:
-bbcagfa nd —glk-ccm
abb-adfl rgikacc-

* Edit distance between 4, ,, = a; ...a, and By, = b, ...

D(A,B) = mm{D (Alk,BM)]+ D(Ag+1,m Berin))
DA Byon) - T

Algorithm Theory, WS 2019/20 Fabian Kuhn

b,:

Computation of the Edit Distance

UNI

FREIBURG

let A, =a, ...ay, By :=by...by, and

AL Bie Dy,p == D(Ay, By)

==

/// /////

cot o(ﬁu 0‘7, ‘l('su\\dn) YJL

A L3

C/—{_M
D, ,

—_—
Algorithm Theory, WS 2019/20 Fabian Kuhn

Computation of the Edit Distance

UNI
f

FREIBURG

Three ways of ending an “alignment” between A, and By:

A,
1. ay isreplaced by b,: 7 / g,
7|
Die=Dr_1,-1+ c(ag, by) L// bC
- T a 7%
2. ay is deleted: A _a
L
Dk=,£= Dy_1,0 + c(ay, €) //// g{///4£
3. by isinserted: A _
Dy,p = Dy -1 + c(€, bp) /////// i
X e

2-

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Computing the Edit Distance

|
FRE:BURG

UNI

* Recurrence relation (for k, ¥ = 1)

Dk,f = min < Dk—l,f

—
—_—

Dr r—1

/

(Dy—1p-1 + c(ag, bp))

+ c(ay, €)

> = min <

+ c(g, byp)

A
(Dy—1p-1+1/0)
Dk—l,f + 1 >

\Dk,‘f—l + 1)

I

unit cost model
\\

* Needtocompute D;;forall0 <i<k,0<j<¢:

Algorithm Theory, WS 2019/20

Fabian Kuhn

10

Recurrence Relation for the Edit Distance

Base cases:
(M/ﬁl‘ (0">J*

DO()—D(E S)—O

Dy; = D(&,B)) = Do; 1+c(gb) Dy =)
D i,0 _D(AUE) — l 1,O+C(au£) (D‘o = ¢

Y

Recurrence relation:

(D1 -1 + c(ag, by
=min< Dy_1, +c(ag e)
\Dyrs—1 +c(gby))

D;

~"

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Order of solving the subproblems

. _by by by b,

UNI
f

FREIBURG

5

N, Y
\N

Algorithm Theory, WS 2019/20 Fabian Kuhn

Algorithm for Computing the Edit Distance .

Algorithm Edit-Distance

Input: 2stringsA=a,..a,,and B = b, ...b,
Output: matrix D = (D,;j)

1 D[0,0] := 0;

2fori:=1tomdo DJ[i,0] :=i;
3forj:=1tondoD|0,j] = j;
4fori:=1tomdo

5 forj:=1tondo

(D[i —1,j] +1 \
6 D[ij]=min{Dli,j—1] +1 .
\Dl — 1,] — 1] + C(ai,bj)}

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

FRE:BURG

UNI

Example A

FREIBURG

<~ || N|a J

Algorithm Theory, WS 2019/20 Fabian Kuhn

Edit Operations

UNI
FREIBURG

a b a

O/ 1]| 2|3 5

b\ 1|1/ 1] 2 4
a|l 2|1 2|2 3
b|3 |2/ 1] 2 4
d| 4 |3 || 2] 2 4
a 54|33 3

Algorithm Theory, WS 2019/20 Fabian Kuhn

15

Computing the Edit Operations

UNI

FREIBURG

Algorithm Edit-Operations(i, j)
Input: matrix D (already computed)
Output: list of edit operations

1 ifi = 0andj = 0 then return empty list

ifi #0and D[i,j] = D[i — 1,j] + 1 then
return Edit-Operations(i — 1,j) o ,delete a;“

2

3

4 elseifj # 0and D[i,j] = D[i,j — 1] + 1 then
5 return Edit-Operations(i,j — 1) o ,insert b;“
6
7
8

else //D[i,j] =D[i —1,j — 1] + c(a;, b))
if a; = b; then return Edit-Operations(i — 1,j — 1)
else return Edit-Operations(i — 1,j — 1) o ,replace a; by b;“

Initial call: Edit-Operations(m,n)

Algorithm Theory, WS 2019/20 Fabian Kuhn

16

|
- [gt:[EP-F]
INN

Edit Operations

S S
o~
O O
7 o
|| || o || | F|[(n]
= e
|||l on|| o
ainalnalmals
MmN NN Ne=en
Sy
N || =N || A e=—ce=n
= -
|] AN - || <
OL:lL\InZAIBAIA,ﬂS
| |
< S < = S

17

Fabian Kuhn

Algorithm Theory, WS 2019/20

Edit Distance: Summary

UNI

FREIBURG

* Edit distance between two strings of length m and n can be
computed in O(mn) time.

e Obtain the edit operations:
— for each cell, store which rule(s) apply to fill the cell
— track path backwards from cell (m, n)
— can also be used to get all optimal “alignments”

* Unit cost model:
— interesting special case
— each edit operation costs 1

Algorithm Theory, WS 2019/20 Fabian Kuhn

18

UNI

Approximate String Matching w=»

FREIBURG

Given: strings T = tt; ... t, (text)and P = p1p; ... py, (pattern).

—_——

———

Goal: Find aninterval [r,s], 1 < r < s < n such that the sub-string
T, ¢ ==t ...tg is the one with highest similarity to the pattern P:

arg min D (Tr S) P)

1<rs<ssn

r 0 9

./

Q

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

Approximate String Matching

UNI
f

FREIBURG

Naive Solution:

/ #COME)MJ%W& ! dmz')

foralll <r<s<ndo

compute D(Ty.5, P) «— cosk: Of(s-r) - wm) = O(ww)

choose the minimum

OWU.‘ O(W\ 'V\g>

ﬂ

it GT)}/ cau bo wwet clove @(V\ W\3>

Algorithm Theory, WS 2019/20

Fabian Kuhn

20

Approximate String Matching

UNI
f

FREIBURG

A related problem:

* For each position_g in the text and each position L in the
pattern compute the minimum edit distance E({, SZ between
P; = p, ...p; and any substring T’. ¢ of T that ends at position s.

-,
|
a s
N\ ' T
P; =p;..p;
-
el 1 P
E(i,s)

Algorithm Theory, WS 2019/20 Fabian Kuhn 21

UNI

Approximate String Matching

FREIBURG

Three ways of ending optimal alignment between T, and P;:

1. t, isreplaced by p;: ol
Epi = Ep_1i-1 + c(tp, pi) —-Ebl | ////
- o - —_—— ?L
2. tisdeleted: B \,/,.Zj _ 1,
Epi =Ep—1,; + c(tp, €) TEb-a,[\
—_— —— —
5
3. p;isinserted: b _
!
@ = Ep;—1+clep;) E.,:;‘.. \
T

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

Approximate String Matching

Recurrence relation (unit cost model):

Eb,i = min- Eb—l,i
KEb,i—l
Base cases:
/
Eoo=0
Eo; =1
EiO — O &K
=

Algorithm Theory, WS 2019/20

(Ep_1i-1+1/0)

+1 >
+1)
Fabian Kuhn

23

UNI
f

FREIBURG

Example

|
FREIBURG

, —
— H— : ‘
!\ m a t h e m t i ¢ s
— ? N A
A X A A A A
X \ T \\ Ti | \\
im : N N K
A AR A A A N AN A
S S S
u <
A A A A / AR N A A
| S \\ Tﬁ
l < <
A A A / A R A
_ < < <
LA N J“\ .
i < Cl< <
ma -t

Algorithm Theory, WS 2019/20

Fabian Kuhn

24

Approximate String Matching

e Optimal matching consists of optimal sub-matchings
* Optimal matching can be computed in O (mn) time

* Get matching(s):

— Start from minimum entry/entries in bottom row

— Follow path(s) to top row

* Algorithm to compute E (b, i) identical to edit distance
algorithm, except for the initialization of E (b, 0)

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Related Problems in Bioinformatics

Sequence Alignment:

Find optimal alignment of two given DNA, RNA, or amino acid
sequences.

GA-CGGATTASZG
| [
GATCGGAAT -G

Global vs. Local Alignment:
* Global alignment: find optimal alignment of 2 sequences

* Local alignment: find optimal alignment of sequence 1
(patter) with sub-sequence of sequence 2 (text)

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

