Chapter 4
Amortized Analysis

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG

Amortization

UNI
f

FREIBURG

* Consider sequence 04, 0, ..., 0, of n operations
(typically performed on some data structure D)

* t;: execution time of operation 0;
T = ty + 1ty + o+t total execution time

* The execution time of a single operation might

vary within a large range (e.g., t; € [1,0(i)])

* The worst case overall execution time might still be small

—> average execution time per operation might be small in
the worst case, even if single operations can be expensive

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Analysis of Algorithms

UNI

FREIBURG

* Best case

. IWorst case S
ical wpnd

}
Average casez/ ‘T/usmua : vaudlsw Tupul

°ﬂ Amortized worst casej

What is the average cost of an operation
in a worst case sequence of operations?

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI

Example 1: Augmented Stack

FREIBURG

Stack Data Type: Operations
 S.push(x) :inserts x on top of stack
* S.pop() : removes and returns top element

Complexity of Stack Operations
* In all standard implementations: O(1)

Additional Oper/ation
* S.multipop(k) : remove and return top k elements

e Complexity: O (k)

* What is the amortized complexity of these operations?

iw}‘«‘hm . coustan) awedsred cost
— CAu ou‘v) OCA(DJQ :"C'MS g-(b\u S rea‘ we fK%LJA 6"0 S

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Augmented Stack: Amortized Cost

UNI
f

FREIBURG

Amortized Cost
* Sequence of operationsi =1,2,3,...,n

* Actual cost of op. i: ¢;

_

* Amortized cost of op. i is a; if for every possible seq. of op.,
n " n

T = ti < a;
=1 =1

Actual Cost of Augmented Stack Operations
* S.push(x), S.pop(): actual cost t; = 0(1)
« S.multipop(k) :actual cost t; = 0 (k)

 Amortized cost of all three operations is constant

— The total number of “popped” elements cannot be more than the total
number of “pushed” elements: cost for pop/multipop < cost for push

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

Augmented Stack: Amortized Cost

UNI

FREIBURG

Amortized Cost
DYDY
i i

Actual Cost of Augmented Stack Operations
« S.push(x), S.pop(): actualcostt; < c

actualcostt; < c-k

‘

« S.multipop(k)
W e?mc“%&us

P =W ()us‘«ogs — ‘\‘DL\ ?M'A cost = ce

+o&q(# oaﬂld-?(} eﬂQu«: P — /\1<\1\ ?o()/um”%?of (@5\l g ¢

_ = dtal ot = 2c%
av&co%ga.wg. € T Ve 1 =%2¢

n P —

Algorithm Theory, WS 2019/20 Fabian Kuhn

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation Counter Value Cost
00000 |
1 00001 * 1
2 00010 ¥ 2
3 00011 1
4 00100 3
5 00101 1
6 00110 2
7 00111 . 1
8 01000 ¥ 4
9 01001 1
10 01010 2
11 01011 1
12 01100 3
13 01101 1

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Accounting Method

UNI
f

FREIBURG

Observation:
* Eachincrement flips exactlyoneOintoa 1.

0010001111 = 0010010000

Idea:
* Have a bank account (with initial amount 0)

* Paying x to the bank account costs x
* Take “money” from account to pay for expensive operations

Applied to binary counter:
* Flip from 0 to 1: pay_1 to bank account (cost: 2)
* Flip from 1 to O: take 1 from bank account (cost: 0)

e Amount on bank account = number of ones
- We always have enough “money” to pay!

Algorithm Theory, WS 2019/20 Fabian Kuhn

Accounting Method

Gweoc J’;MJ avs)‘

|

UNI

FREIBURG

Op. | Counter | Cost To Bank | From Bank Ne'f Cost Credit
00000 v,
1 (00001 1 ", 2 €y
2 100010 2 | 2 |
3 00011 1 o) 2 2
4 {00100 3 2 2 |
5 100101 1 O 2 2
6 00110 2 ‘ (2. 2
7 00111 1 (0 2 2
8 (01000 4 l 3 2 |
9 01001 1 , o 2 2
10 01010 2 \ ey 2 2
" T = s G
C+3 1T = A 20
Algorithm Theory, WS 2019/20 F‘:%IgﬁKuhn CS A g 9

Potential Function Method

UNI

FREIBURG

* Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

» State of data structure / system: S € § (state space)

Potential function P:3 - Ry

 Operation i:
— t;: actual cost of operation i
— §;: state after execution of operation i (S,: initial state)

— ®; = P(S;): potential after exec. of operation i

—_—

— a;: amortized cost of operation i:

— o
a; =t +®; —P;_4

Algorithm Theory, WS 2019/20 Fabian Kuhn

10

UNI
f

FREIBURG

Potential Function Method

Operation i: = a; 4 zp(b_‘ - 45(.
actual cost: t; amortized cost: a; = t; + &; — D;_4

R e

n
.=<Zai>+¢0—cbn 520; + b,

i — —

Overall cost:

- 20
Z.éi = O‘ + (D
+ aZ
R
+ a-; 2
' !
4 a, —H()k_‘ - &,

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Binary Counter: Potential Method

UNI
f

FREIBURG

 Potential function:
&: number of ones in current counter

* Clearly, ®y =0and ®; = 0foralli = 0

* Actual cost t;:
= 1 flipfromOto1l
= t; — 1flipsfrom1toO

————

* Potential difference: &; —®;,_; =1—-(t; —1) =2 —t;

e Amortizedcost:a; = t; + P; —P;_1 = 2

Algorithm Theory, WS 2019/20 Fabian Kuhn

12

