Chapter 4
 Amortized Analysis

Algorithm Theory WS 2019/20

Fabian Kuhn

Amortization

- Consider sequence $o_{1}, o_{2}, \ldots, o_{n}$ of n operations (typically performed on some data structure D)
- t_{i} : execution time of operation o_{i}
- $\bar{T}:=t_{1}+t_{2}+\cdots+t_{n}$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_{i} \in[\underline{1}, \underline{O(i)}]$)
- The worst case overall execution time might still be small
\rightarrow average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

- Best case
- Worst case
- Average case

- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Example 1: Augmented Stack

Stack Data Type: Operations

- S. push $(x) \quad$ inserts x on top of stack
- S.pop() : removes and returns top element

Complexity of Stack Operations

- In all standard implementations: $O(1)$

Additional Operation

- S.multipop(k) : remove and return top k elements
- Complexity: $\underline{\underline{O(k)}}$
- What is the amortized complexity of these operations?

$$
\begin{aligned}
& \text { intuitorn: constant amotited cost } \\
& \rightarrow \text { can only delete items from } S \text { that were pushed to } S
\end{aligned}
$$

Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations $i=1,2,3, \ldots, n$
- Actual cost of op. $i: \boldsymbol{t}_{\boldsymbol{i}}$
- Amortized cost of op. i is $\boldsymbol{a}_{\boldsymbol{i}}$ if for every possible seq. of op.,

$$
T=\sum_{i=1}^{n} t_{i} \leq \sum_{i=1}^{n} a_{i}
$$

Actual Cost of Augmented Stack Operations

- $S \cdot \operatorname{push}(x), S . \operatorname{pop}():$ actual cost $t_{i}=\underline{O(1)}$
- $S . \operatorname{multipop}(k) \quad:$ actual cost $t_{i}=O(k)$
- Amortized cost of all three operations is constant
- The total number of "popped" elements cannot be more than the total number of "pushed" elements: cost for pop/multipop \leq cost for push

Augmented Stack: Amortized Cost
Amortized Cost

$$
T=\sum_{i} t_{i} \leq \sum_{i} a_{i}
$$

Actual Cost of Augmented Stack Operations

- $S . \operatorname{push}(x), S$. pop(): actual cost $t_{i} \leq c$
- S. multipop $(k) \quad:$ actual cost $t_{i} \leq c \cdot k$
n operations
$p \leq n$ push ops \rightarrow total push $\cos t \leq C \cdot P$
total \# deleted elem: $\leq P \rightarrow$ total pop/multipop cost $\leq C \cdot P$
\rightarrow total cost $\leq 2 c p$
avg. cost prop. : $\leq \frac{2 c p}{n} \leq \frac{2 c p}{p}=2 c$

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost
	00000	
1	00001	
2	00010	
3	00011	1
4	00100	2
5	00101	1
6	00110	3
7	00111	1
8	01000	2
9	01001	1
10	01010	4
11	01011	1
12	01100	2
13	01101	1
2	3	

Accounting Method

Observation:

- Each increment flips exactly one $\underline{0}$ into a $\underline{1}$

$$
0010001111 \Rightarrow 0010010000
$$

Idea:

- Have a bank account (with initial amount 0)
- Paying \underline{x} to the bank account costs \underline{x}
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from 0 to 1: pay 1 to bank account (cost: 2)
- Flip from 1 to 0 : take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
\rightarrow We always have enough "money" to pay!

Accounting Method
amortized cost

Potential Function Method

- Most generic and elegant way to do amortized analysis!
- But, also more abstract than the others...
- State of data structure / system: $S \in \mathcal{S}$ (state space)

Potential function $\underline{\underline{\Phi}}: \underline{\mathcal{S}} \rightarrow \underline{\mathbb{R}_{\underline{0}}}$

- Operation i :
- $\boldsymbol{t}_{\boldsymbol{i}}$: actual cost of operation i
- $\overline{\boldsymbol{S}}_{\boldsymbol{i}}$: state after execution of operation i (S_{0} : initial state)
$-\overline{\boldsymbol{\Phi}}_{i}:=\Phi\left(S_{i}\right)$: potential after exec. of operation i
- $\underline{\boldsymbol{a}_{i}}:$ amortized cost of operation i :

$$
a_{i}:=t_{i}+\Phi_{i}-\Phi_{i-1}
$$

Potential Function Method
Operation \boldsymbol{i} :

$$
t_{i}=a_{i}+\phi_{i-1}-\phi_{i}
$$

actual cost: $t_{i} \quad$ amortized cost: $a_{i}=t_{i}+\Phi_{i}-\Phi_{i-1}$
Overall cost:

$$
\begin{aligned}
& T:=\sum_{i=1}^{n} t_{i}=\left(\sum_{i}^{n} a_{i}\right)+\Phi_{0}-\underbrace{\Phi_{n}}_{20} \leqslant \underline{a_{i}}+\phi_{0} \\
& \Sigma t_{i}=a_{1}+\phi_{0}-\phi_{1} \\
& +a_{2}+\phi_{1}-\phi_{2} \\
& +a_{3} \\
& +a_{n} \\
& +\phi_{n-1}-\phi_{n}
\end{aligned}
$$

Binary Counter: Potential Method

- Potential function:

Φ : number of ones in current counter

- Clearly, $\Phi_{0}=0$ and $\Phi_{i} \geq 0$ for all $i \geq 0$
- Actual cost $\underline{t_{i}}$:
- 1 flip from 0 to 1
- $\underline{t_{i}-1}$ flips from 1 to 0
- Potential difference: $\Phi_{i}-\Phi_{i-1}=1-\left(t_{i}-1\right)=\underline{2-t_{i}}$
- Amortized cost: $a_{i}=\underline{t_{i}}+\Phi_{i}-\Phi_{i-1}=2$

