

Chapter 4 Amortized Analysis

Algorithm Theory WS 2019/20

Fabian Kuhn

Amortization

- Consider sequence $o_1, o_2, ..., o_n$ of n operations (typically performed on some data structure D)
- t_i : execution time of operation o_i
- $T := t_1 + t_2 + \cdots + t_n$: total execution time
- The execution time of a single operation might vary within a large range (e.g., $t_i \in [1, O(i)]$)
- The worst case overall execution time might still be small
 - → average execution time per operation might be small in the worst case, even if single operations can be expensive

Analysis of Algorithms

- Best case
- Worst case
- · Average case Lushally: random input
- Amortized worst case

What is the <u>average cost</u> of an operation in a <u>worst case sequence</u> of operations?

Example 1: Augmented Stack

Stack Data Type: Operations

- S.push(x) : inserts x on top of stack
- S.pop(): removes and returns top element

Complexity of Stack Operations

• In all standard implementations: O(1)

Additional Operation

- S.multipop(k): remove and return top k elements
- Complexity: O(k)
- What is the amortized complexity of these operations?

```
induitory: constant amortited cost

so can only delete items from S that were pushed to S
```

Augmented Stack: Amortized Cost

Amortized Cost

- Sequence of operations i = 1, 2, 3, ..., n
- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of op.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i$$

Actual Cost of Augmented Stack Operations

- S. push(x), S. pop(): actual cost $t_i = Q(1)$
- $S. \operatorname{multipop}(k)$: actual cost $t_i = O(k)$
- Amortized cost of all three operations is constant
 - The total number of "popped" elements cannot be more than the total number of "pushed" elements: cost for pop/multipop ≤ cost for push

Augmented Stack: Amortized Cost

Amortized Cost

$$T = \sum_{i} t_i \le \sum_{i} a_i$$

Actual Cost of Augmented Stack Operations

- S.push(x), S.pop(): actual cost $t_i \le c$
- S. multipop(k) : actual cost $t_i \leq c \cdot k$

N operations

$$P \le n$$
 push ops \longrightarrow total push cost $\le C \cdot P$

total # deleted elem: $\le P$ \longrightarrow total pop/multipop cost $\le C \cdot P$
 \longrightarrow total cost $\le 2CP$
 $QVS. cost parap. : \le \frac{2CP}{N} \le \frac{2CP}{P} = 2C$

Example 2: Binary Counter

Incrementing a binary counter: determine the bit flip cost:

Operation	Counter Value	Cost
	00000	
1	00001	1
2	00010	2
3	0001 <mark>1</mark>	1
4	00 100	3
5	0010 <mark>1</mark>	1
6	001 10	2
7	0011 <mark>1</mark>)	1
8	01000	4
9	0100 <mark>1</mark>	1
10	010 10	2
11	0101 <mark>1</mark>	1
12	01 100	3
13	0110 <mark>1</mark>	1

Accounting Method

Observation:

Each increment flips exactly one <u>0</u> into a <u>1</u>

$$00\underline{100011111} \Rightarrow \underline{0010010000}$$

Idea:

- Have a bank account (with initial amount 0)
- Paying <u>x</u> to the bank account costs <u>x</u>
- Take "money" from account to pay for expensive operations

Applied to binary counter:

- Flip from <u>0 to 1</u>: pay <u>1</u> to bank account (cost: 2)
- Flip from 1 to 0: take 1 from bank account (cost: 0)
- Amount on bank account = number of ones
 - → We always have enough "money" to pay!

Accounting Method

					<u> </u>	
Op.	Counter	Cost	To Bank	From Bank	Net Cost	Credit
	00000					0
1	00001	1	ļ	0	2	1
2	00010	2	(1	2	1
3	00011	1	1	0	2	2
4	00100	3	l	2	2	1
5	00101	1	1	0	2	2
6	00110	2	1	(2	2
7	00111	1	1	0	2	3
8	01000	4	1	3	2	1
9	01001	1	1	0	2	2
10	01010	2		با	, 2,	2
				—		

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in \mathcal{S}$ (state space)

Potential function $\underline{\Phi} : \underline{\mathcal{S}} \to \mathbb{R}_{\geq 0}$

Operation *i*:

- t_i : actual cost of operation i
- $-\overline{S_i}$: state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i

$$a_i$$
: amortized cost of operation i : $a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$

Potential Function Method

Operation *i*:

$$t_i = \alpha_i + \phi_{i-1} - \phi_i$$

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \Phi_0 - \Phi_n \le \underbrace{\geq a_i}_{\geq 0} + \Phi_0$$

$$\begin{aligned}
& \leq \epsilon_i = \alpha_1 + \phi_0 - \phi_1 \\
& + \alpha_2 \\
& + \alpha_3
\end{aligned}$$

$$\begin{aligned}
& + \phi_1 - \phi_2 \\
& + \phi_2 - \phi_3
\end{aligned}$$

Binary Counter: Potential Method

Potential function:

Φ: number of ones in current counter

- Clearly, $\Phi_0 = 0$ and $\Phi_i \ge 0$ for all $i \ge 0$
- Actual cost t_i:
 - 1 flip from 0 to 1
 - $t_i 1$ flips from 1 to 0
- Potential difference: $\Phi_i \Phi_{i-1} = 1 (t_i 1) = 2 t_i$
- Amortized cost: $a_i = t_i + \Phi_i \Phi_{i-1} = 2$