Chapter 4
Amortized Analysis

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG



Amortized Cost

UNI
f

FREIBURG

Amortized Cost of sequence of operationsi =1,2,...,n
* Actual cost of op. i: ¢;

* Amortized cost of op. i is a; if for every possible seq. of ops.,
n n

T = ti < a;
=1 =1

Amortized Analysis: Techniques
1. Directly analyze the total cost of all operations
2. Accounting method

 Bank account with initial balance 0
 Paying x to bank costs x
 Use money from the bank to pay for expensive operations

3. Potential function method

Algorithm Theory, WS 2019/20 Fabian Kuhn 2



Potential Function Method

UNI

FREIBURG

* Most generic and elegant way to do amortized analysis!
— But, also more abstract than the others...

» State of data structure / system: S € § (state space)

Potential function ®:8 - R

 Operation i:
— t;: actual cost of operation i
— §;: state after execution of operation i (S,: initial state)
— ®; = P(S;): potential after exec. of operation i
— a;: amortized cost of operation i:

a; =t +®; —P;_4

Algorithm Theory, WS 2019/20 Fabian Kuhn



Potential Function Method

FREIBURG

5
=
Operation i:
actual cost: t; amortized cost: a; = t; + &; — D;_4

Overall cost:

n n

Pyt (e + 0o,

i=1 i

Algorithm Theory, WS 2019/20 Fabian Kuhn 4



Example 3: Dynamic Array

UNI
f

FREIBURG

* How to create an array where the size dynamically adapts to the
number of elements stored?
— e.g., Java “ArrayList” or Python “list”

Implementation:

* Initialize with initial size N,

* Assumptions: Array can only grow by appending new elements
at the end

* If array is full, the size of the array is increased by a factor f > 1

Operations (array of size N):
* read / write: actual cost 0(1)

e append: actual costis O(1) if array is not full, otherwise
the append cost is O(S - N) (new array size)

Algorithm Theory, WS 2019/20 Fabian Kuhn 5



Example 3: Dynamic Array

UNI
f

FREIBURG

Notation:
* n:number of elements stored
 N:current size of array

_ _ 1 ifn <N
Cost t; of i*" append operation: t; = {,3 N ifz — N

Claim: Amortized append cost is O(1)

Potential function ®?
* should allow to pay expensive append operations by cheap ones
 when array is full, ® has to be large

 immediately after increasing the size of the array, ® should be
small again

Algorithm Theory, WS 2019/20 Fabian Kuhn 6



Dynamic Array: Potential Function

UNI
f

FREIBURG

Cost t; of it" append operation: t; = {

Algorithm Theory, WS 2019/20 Fabian Kuhn

1
b-N

ifn <N
ifn=N



Dynamic Array: Amortized Cost

UNI
f

FREIBURG

Cost t; of it" append operation: t; = {

Algorithm Theory, WS 2019/20 Fabian Kuhn

1
b-N

ifn <N
ifn=N



