

Chapter 4 Amortized Analysis

Algorithm Theory WS 2019/20

Fabian Kuhn

Amortized Cost

Amortized Cost of sequence of operations i=1,2,...,n

- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of ops.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i$$

Amortized Analysis: Techniques

- 1. Directly analyze the total cost of all operations
- 2. Accounting method
 - Bank account with initial balance 0
 - Paying x to bank costs x
 - Use money from the bank to pay for expensive operations
- Potential function method

Potential Function Method

- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in S$ (state space)

Potential function $\Phi: \mathcal{S} \to \mathbb{R}_{>0}$

Operation i:

- t_i : actual cost of operation i
- S_i : state after execution of operation i (S_0 : initial state)
- $-\Phi_i := \Phi(S_i)$: potential after exec. of operation i
- a_i : amortized cost of operation i:

$$a_i \coloneqq t_i + \Phi_i - \Phi_{i-1}$$

Potential Function Method

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_i = \left(\sum_{i=1}^{n} a_i\right) + \Phi_0 - \Phi_n$$

Example 3: Dynamic Array

- How to create an array where the size dynamically adapts to the number of elements stored?
 - e.g., Java "ArrayList" or Python "list"

Implementation:

- Initialize with initial size N_0
- Assumptions: Array can only grow by appending new elements at the end
- If array is full, the size of the array is increased by a factor $\beta>1$

Operations (array of size *N*):

- read / write: actual cost O(1)
- append: actual cost is O(1) if array is not full, otherwise the append cost is $O(\beta \cdot N)$ (new array size)

Example 3: Dynamic Array

Notation:

- n: number of elements stored
- *N*: current size of array

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

Claim: Amortized append cost is O(1)

Potential function Φ ?

- should allow to pay expensive append operations by cheap ones
- when array is full, Φ has to be large
- immediately after increasing the size of the array, Φ should be small again

Dynamic Array: Potential Function

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

Dynamic Array: Amortized Cost

Cost
$$t_i$$
 of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$