

Chapter 4 Amortized Analysis

Algorithm Theory WS 2019/20

Fabian Kuhn

Amortized Cost

Amortized Cost of sequence of operations i = 1, 2, ..., n

- Actual cost of op. i: t_i
- Amortized cost of op. i is a_i if for every possible seq. of ops.,

$$T = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i$$

Amortized Analysis: Techniques

- 1. Directly analyze the total cost of all operations
- 2. Accounting method
 - Bank account with initial balance 0
 - Paying x to bank costs x
 - Use money from the bank to pay for expensive operations
- 3. Potential function method

Potential Function Method

- FREIBURG
- Most generic and elegant way to do amortized analysis!
 - But, also more abstract than the others...
- State of data structure / system: $S \in S$ (state space) **Potential function** $\Phi: S \to \mathbb{R}_{\geq 0}$
- Operation *i*:
 - *t_i*: actual cost of operation *i*
 - S_i : state after execution of operation *i* (S_0 : initial state)
 - $\Phi_i \coloneqq \Phi(S_i)$: potential after exec. of operation *i*
 - *a_i*: amortized cost of operation *i*:

$$\underline{a_i} \coloneqq \underline{t_i} + \underline{\Phi_i - \Phi_{i-1}}$$

Operation *i*:

actual cost: t_i amortized cost: $a_i = t_i + \Phi_i - \Phi_{i-1}$

Overall cost:

$$T \coloneqq \sum_{i=1}^{n} t_{i} = \left(\sum_{i}^{n} a_{i}\right) + \Phi_{0} - \Phi_{n}$$

$$= \left\{ q_{i} \ge \xi + \frac{1}{2} - \phi_{0} \right\}$$

$$= \left\{ q_{i} \ge \xi + \frac{1}{2} - \phi_{0} \right\}$$

Example 3: Dynamic Array

- FREIBURG
- How to create an array where the size dynamically adapts to the number of elements stored?
 - e.g., Java "ArrayList" or Python "list"

Implementation:

• Initialize with initial size N_0

- $\frac{N + 1}{N}$ $\frac{N + 1}{N}$ $\frac{N + 1}{N}$ $\frac{N + 1}{N}$ $\frac{N + 1}{N}$
- Assumptions: Array can only grow by appending new elements at the end
- If array is full, the size of the array is increased by a factor $\beta > 1$

Operations (array of size *N***):**

- read / write: actual cost O(1)
- append: actual cost is O(1) if array is not full, otherwise the append cost is $O(\beta \cdot N)$ (new array size)

Algorithm Theory, WS 2019/20

Example 3: Dynamic Array

Notation:

- *n*: number of elements stored
- N: current size of array

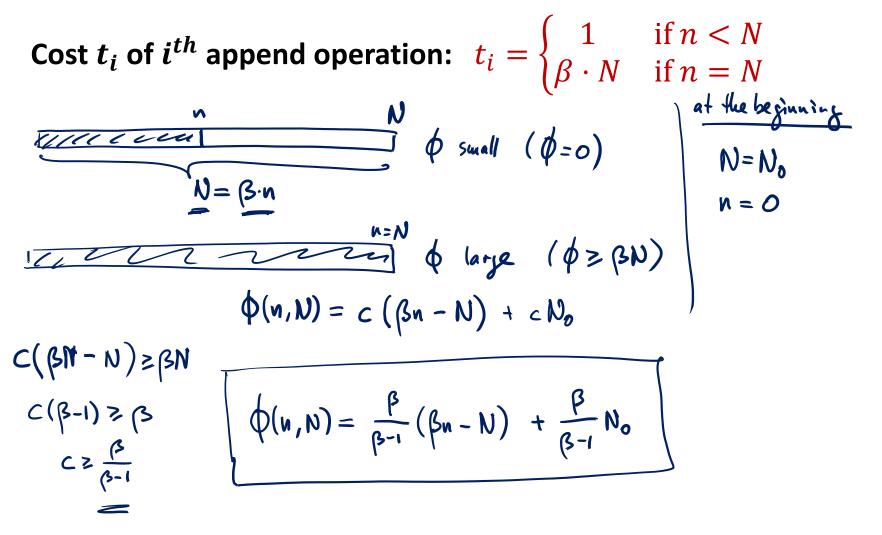
Cost t_i of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } \underline{n} < N \\ \beta \cdot N & \text{if } \overline{n} = N \end{cases}$

Claim: Amortized append cost is O(1)

Potential function Φ ?

- should allow to pay expensive append operations by cheap ones
- when array is full, $\underline{\Phi}$ has to be large
- immediately after increasing the size of the array, $\underline{\Phi}$ should be small again

Dynamic Array: Potential Function



Dynamic Array: Amortized Cost

Cost t_i of i^{th} append operation: $t_i = \begin{cases} 1 & \text{if } n < N \\ \beta \cdot N & \text{if } n = N \end{cases}$

$$\phi(n,N) = \frac{\beta}{\beta-1} \left(\beta n - N + N_{\theta}\right)$$

