

Chapter 5 Data Structures

Algorithm Theory WS 2019/20

Fabian Kuhn

Dictionary:

- Operations: insert(key,value), delete(key), find(key)
- Implementations:
 - Linked list: all operations take O(n) time (n: size of data structure)
 - Balanced binary tree: all operations take $O(\log n)$ time
 - Hash table: all operations take O(1) times (with some assumptions)

Stack (LIFO Queue):

- Operations: push, pull
- Linked list: O(1) for both operations

(FIFO) Queue:

- Operations: enqueue, dequeue
- Linked list: O(1) time for both operations

Here: Priority Queues (heaps), Union-Find data structure

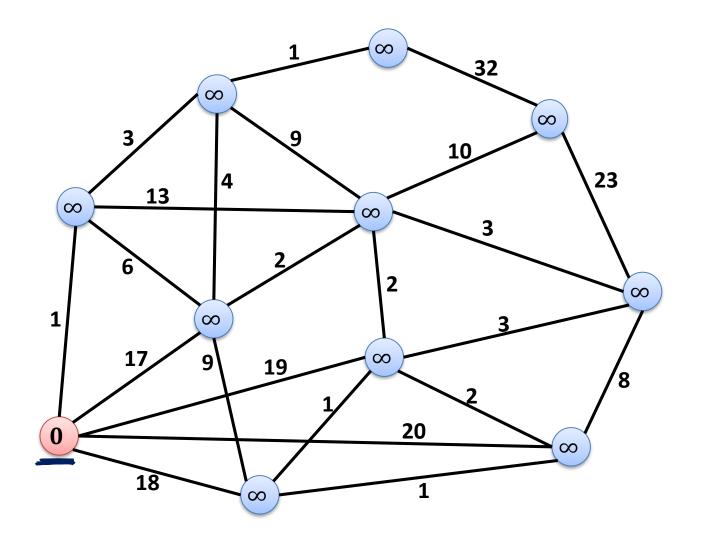
Dijkstra's Algorithm

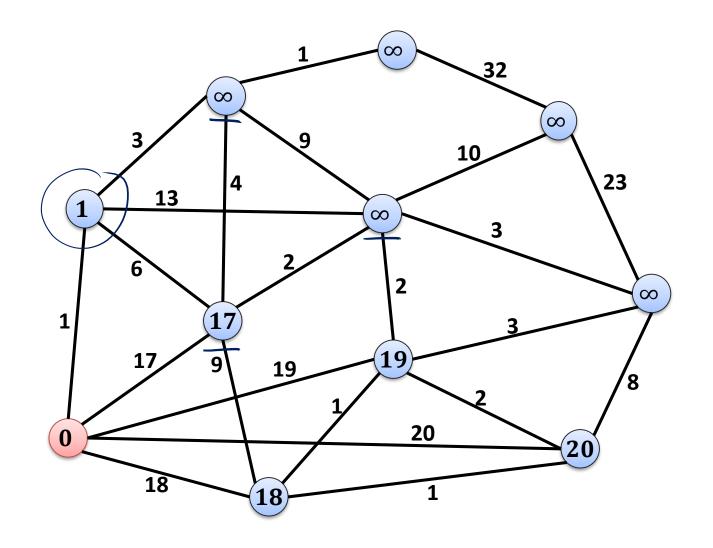
Single-Source Shortest Path Problem:

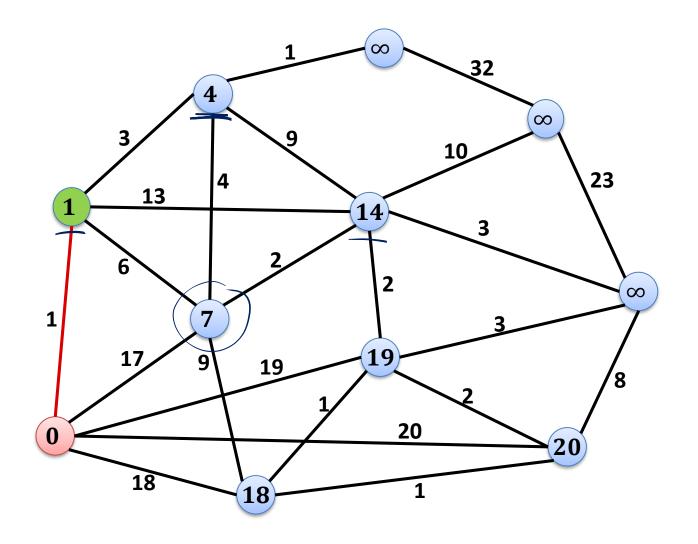
- **Given:** graph G = (V, E) with edge weights $w(e) \ge 0$ for $e \in E$ source node $s \in V$
- **Goal:** compute shortest paths from s to all $v \in V$

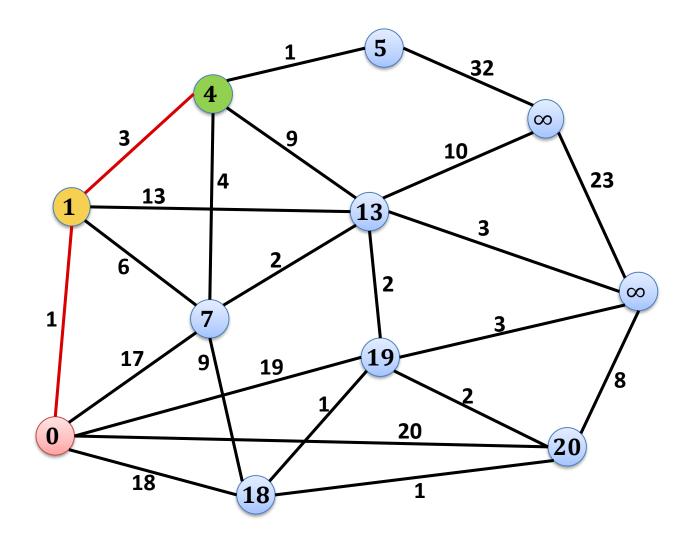
Dijkstra's Algorithm:

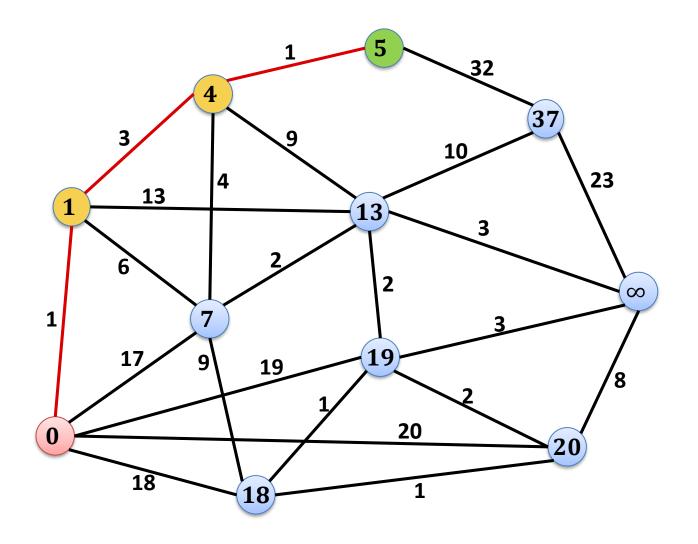
- Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes are unmarked
- 3. Get unmarked node u which minimizes d(s, u):
- For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$ mark node u
- 6. Until all nodes are marked

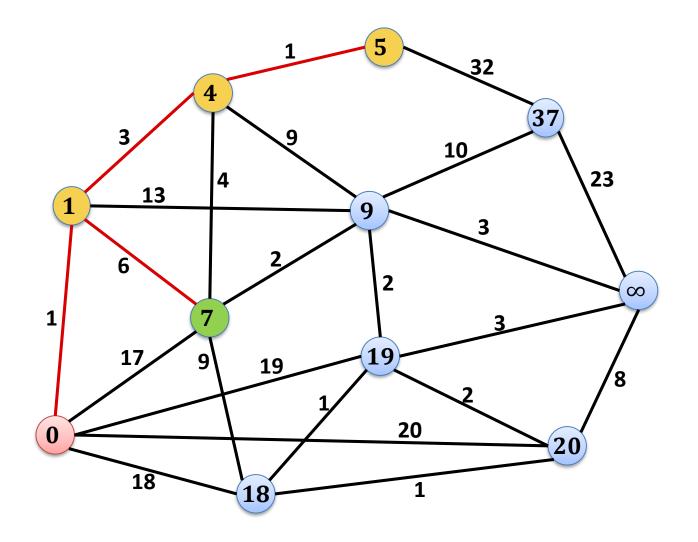


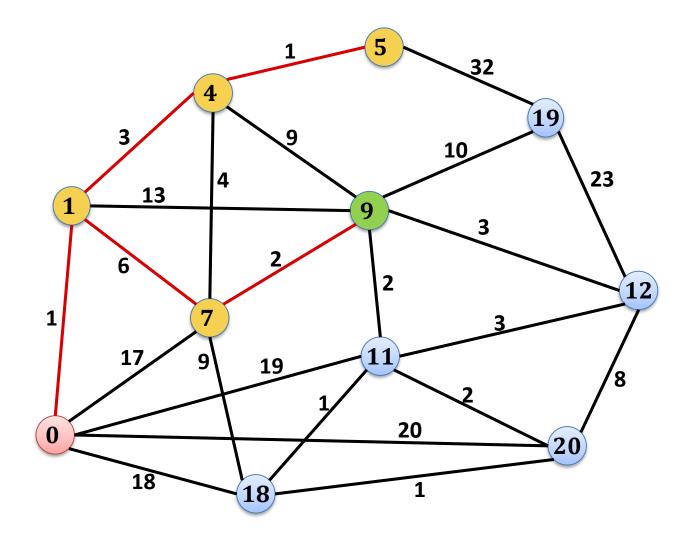


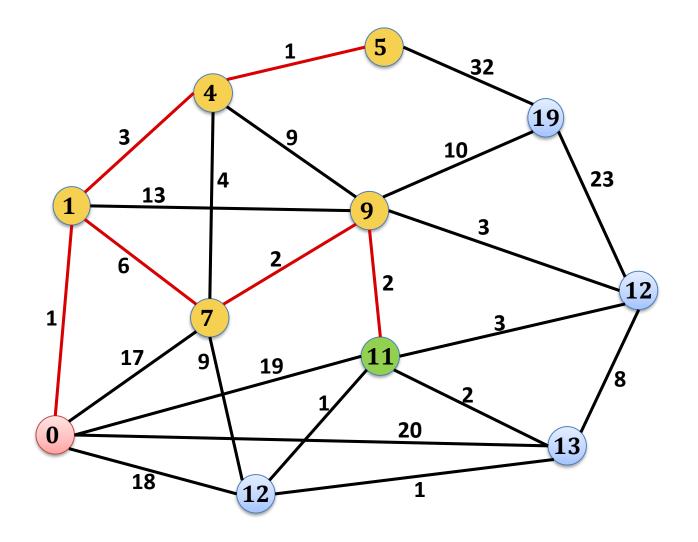












Implementation of Dijkstra's Algorithm

Dijkstra's Algorithm:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked undes data structure to manage unmarked nodes add all nodes with their initial dist. estimate to DS
- 3. Get unmarked node u which minimizes d(s, u):

- 4. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$ potentially update d(s, v) for all neighbors v of umark node u
- Lelete u from DS
- 6. Until all nodes are marked

Priority Queue / Heap

- Stores (key,data) pairs (like dictionary)
- But, different set of operations:
- Initialize-Heap: creates new empty heap
- Is-Empty: returns true if heap is empty
- Insert(key,data): inserts (key,data)-pair, returns pointer to entry
- Get-Min: returns (key,data)-pair with minimum key
- **Delete-Min**: deletes minimum (*key,data*)-pair
 - has to be consistent with get-min operation
- **Decrease-Key**(*entry*, *newkey*): decreases *key* of *entry* to *newkey*
- Merge: merges two heaps into one

Implementation of Dijkstra's Algorithm

Store nodes in a priority queue, use d(s, v) as keys:

- 1. Initialize d(s,s) = 0 and $d(s,v) = \infty$ for all $v \neq s$
- 2. All nodes $v \neq s$ are unmarked create cupty priority greve Q, insert all nodes
- 3. Get unmarked node u which minimizes $\underline{d(s,u)}$:

4. mark node u

- 5. For all $e = \{u, v\} \in E$, $d(s, v) = \min\{d(s, v), d(s, u) + w(e)\}$ for all neighbors of n : Potential call decrease-key
- 6. Until all nodes are marked (until Q is empty)

Analysis

Number of priority queue operations for Dijkstra:

• Initialize-Heap: 1

• Is-Empty: |V|

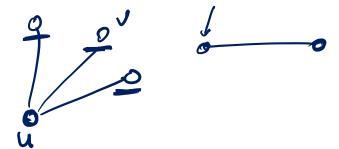
• Insert: |V|

• Get-Min: |V|

• Delete-Min: |V|

• Decrease-Key: |E|

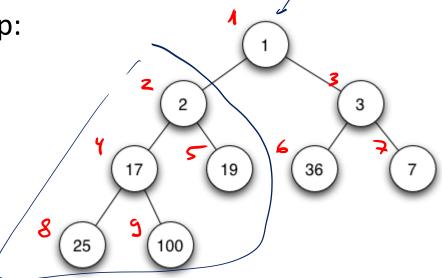
• Merge: 0

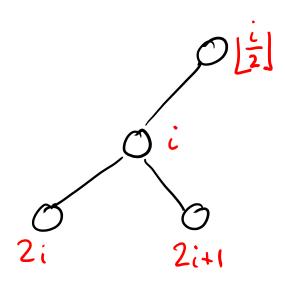


Priority Queue Implementation

Implementation as min-heap:

→ complete binary tree,e.g., stored in an array





Priority Queue Implementation

Implementation as min-heap:

→ complete binary tree,e.g., stored in an array

Initialize-Heap: O(1)

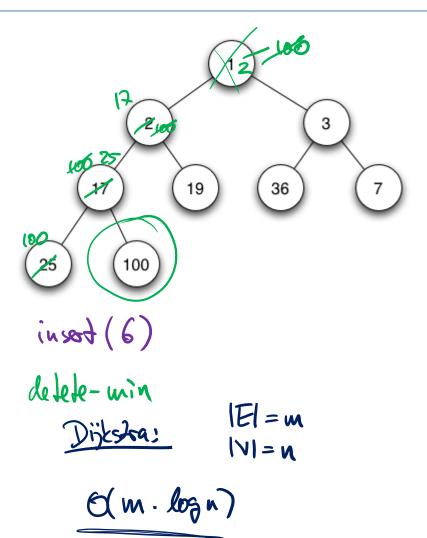
• Is-Empty: O(1)

• Insert: $O(\log n)$

• Get-Min: o(1)

• Delete-Min: $O(\log n)$

• Decrease-Key: $O(\log n)$



• Merge (heaps of size m and $n, m \le n$): $O(m \log n)$

Can We Do Better?

Cost of Dijkstra with complete binary min-heap implementation:

$$O(|E|\log|V|)$$

- Binary heap:
 - insert, delete-min, and decrease-key cost $O(\log n)$ merging two heaps is expensive
- One of the operations insert or delete-min must cost $\Omega(\log n)$:
 - $\underbrace{\mathsf{Heap\text{-}Sort}}_{\mathsf{Insert}}$: Insert n elements into heap, then take out the minimum n times
 - (Comparison-based) sorting costs at least $\Omega(n \log n)$.
- But maybe we can improve merge, decrease-key, and one of the other two operations?

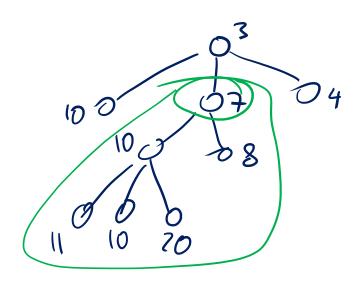
Fibonacci Heaps

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the min-heap property.

Min-Heap Property:

Key of a node $v \le$ keys of all nodes in any sub-tree of v



Fibonacci Heaps

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the min-heap property.

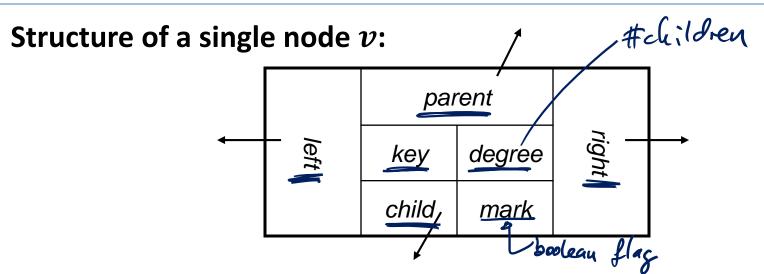
Variables:

- *H.min*: root of the tree containing the (a) minimum key
- *H.rootlist*: circular, doubly linked, unordered list containing the roots of all trees
- H.size: number of nodes currently in H

Lazy Merging:

- To reduce the number of trees, sometimes, trees need to be merged
- Lazy merging: Do not merge as long as possible...

Trees in Fibonacci Heaps



- v.child: points to circular, doubly linked and unordered list of the children of v
- v.left, v.right: pointers to siblings (in doubly linked list)
- v.mark: will be used later...

Advantages of circular, doubly linked lists:

- Deleting an element takes constant time
- Concatenating two lists takes constant time

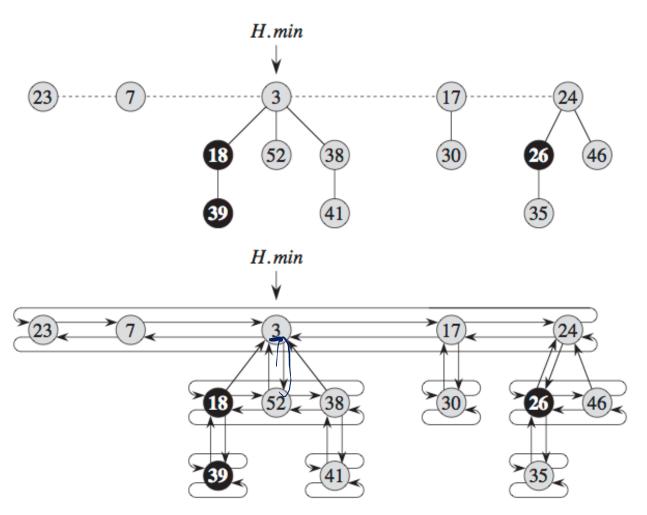


Figure: Cormen et al., Introduction to Algorithms

Simple (Lazy) Operations

Initialize-Heap *H*:

• H.rootlist := H.min := null

Merge heaps H and H':

- concatenate root lists
- update H.min

Insert element *e* into *H*:

- create new one-node tree containing $e \to H'$
 - mark of root node is set to false
- merge heaps H and H'

Get minimum element of *H*:

return <u>H. min</u>

Operation Delete-Min

Delete the node with minimum key from *H* and return its element:

```
m \coloneqq H.min;
   if H.size > 0 then
       remove H.min from H.rootlist;
3.
       add H.min.child (list) to H.rootlist
    H.Consolidate();
   // Repeatedly merge nodes with equal degree in the root list
   // until degrees of nodes in the root list are distinct.
   // Determine the element with minimum key
```

6. **return** *m*

Rank and Maximum Degree

Ranks of nodes, trees, heap:

Node v:

• rank(v): degree of v (number of children of v)

Tree T:

• rank(T): rank (degree) of root node of T

Heap H:

• rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):

$$rank(H) \leq D(n)$$

- for a known function D(n)

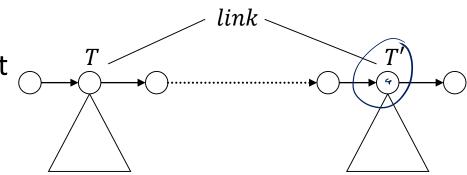
Merging Two Trees

Given: Heap-ordered trees T, T' with rank(T) = rank(T')

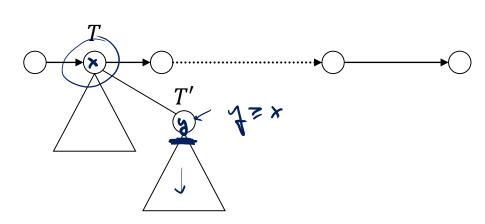
• Assume: min-key of T < min-key of T'

Operation link(T, T'):

• Removes tree T' from root list and adds T' to child list of T

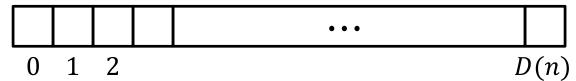


- rank(T) := rank(T) + 1
- (T'.mark = false)



Consolidation of Root List

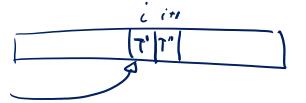
Array A pointing to find roots with the same rank:



Consolidate:

- 1. for i := 0 to D(n) do $A[i] := \underline{\text{null}}$;
- 2. while $H.rootlist \neq null do$
- 3. T := "delete and return first element of H.rootlist"
- 4. while $A[rank(T)] \neq \text{null do}$
- 5. $\underline{T'} \coloneqq A[rank(T)];$
- 6. A[rank(T)] := null;
- 7. $(\underline{T}) = link(T, T')$
- 8. A[rank(T)] := T

9. Create new *H*. rootlist and *H*. min



O(|H.rootlist|+D(n))

time;

(| H. 100Hist) + D(n) + # (inlops.)

before consolidate

Time: