Chapter 5
Data Structures

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG



Priority Queue / Heap

UNI
FREIBURG

» Stores (key,data) pairs (like dictionary)
* But, different set of operations:

* Initialize-Heap: creates new empty heap
* Is-Empty: returns true if heap is empty
* Insert(key,data): inserts (key,data)-pair, returns pointer to entry

T
* Get-Min: returns (key,data)-pair with minimum key

* Delete-Min: deletes minimum (key,data)-pair

— has to be consistent with get-min operation

* Decrease-Key(entry,newkey): decreases key of entry to newkey

* Merge: merges two heaps into one

Algorithm Theory, WS 2019/20 Fabian Kuhn 2



UNI

Priority Queue Implementation

FREIBURG

Implementation as min-heap: o

2 e e, R nS
Initialize-Heap: 0(1) ° e @ o
* |s-Empty: 0o(1) e @

* |nsert: O(logn)
* Get-Min: 0(1)

 Delete-Min: O(logn)

 Decrease-Key: O(logn)

* Merge (heaps of sizemand n, m < n): O(mlogn)

Algorithm Theory, WS 2019/20 Fabian Kuhn 3



Can We Do Better?

UNI
FREIBURG

* Cost of Dijkstra with complete binary min-heap implementation:
O(|E[log|V])

* Binary heap:
insert, delete-min, and decrease-key cost O (logn)
merging two heaps is expensive

* One of the operations insert or delete-min must cost (2(logn):

— Heap-Sort:
Insert n elements into heap, then take out the minimum n times

— (Comparison-based) sorting costs at least  (nlogn).

* But maybe we can improve merge, decrease-key, and one of the
other two operations?

Algorithm Theory, WS 2019/20 Fabian Kuhn 4



Fibonacci Heaps

UNI
FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Min-Heap Property:

Key of a node v < keys of all nodes in any sub-tree of v

Algorithm Theory, WS 2019/20 Fabian Kuhn 5



Fibonacci Heaps

UNI

FREIBURG

Structure:

A Fibonacci heap H consists of a collection of trees satisfying the
min-heap property.

Variables:
« H.min: root of the tree containing the (a) minimum key

 H.rootlist: circular, doubly linked, unordered list containing
the roots of all trees

e H.size: number of nodes currently in H

Lazy Merging:

* To reduce the number of trees, sometimes, trees need to be
merged

* Lazy merging: Do not merge as long as possible...

Algorithm Theory, WS 2019/20 Fabian Kuhn



Trees in Fibonacci Heaps

Structure of a single node v: /‘

/4

parent

1ybu

key | degree

IE]

child/ mark

/

* v.child: points to circular, doubly linked and unordered list of
the children of v

* v.left, v.right: pointers to siblings (in doubly linked list)
 v.mark: will be used later...

Advantages of circular, doubly linked lists:
* Deleting an element takes constant time
* Concatenating two lists takes constant time

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG



Example

UNI

FREIBURG

@

Algorithm Theory, WS 2019/20

Figure: Cormen et al., Introduction to Algorithms

Fabian Kuhn



Simple (Lazy) Operations

UNI

FREIBURG

Initialize-Heap H.:
e H.rootlist := H.min := null

Merge heaps H and H':
e concatenate root lists
 update H.min

f/I;sert element e into H:

* create new one-node tree containing e 2> H’
— mark of root node is set to false

_°® merge heaps H and H'

Get minimum element of H:
e return H.min

Algorithm Theory, WS 2019/20 Fabian Kuhn



UNI

Operation Delete-Min

FREIBURG

Delete the node with minimum key from H and return its element:

O—O —w— el o —©
m = H.min; /_\ ¥ /\\ /A
if H.size > 0 then .Z] A

remove H. min from H.rootlist;
add H.min. child (list) to H.rootlist

s LN e

H. Consolidate();}

// Repeatedly merge nodes with equal degree in the root list
// until degrees of nodes in the root list are distinct.
// Determine the element with minimum key

6. returnm

Algorithm Theory, WS 2019/20 Fabian Kuhn 10



Rank and Maximum Degree

UNI

FREIBURG

Ranks of nodes, trees, heap:

Node v:
* rank(v): degree of v (humber of children of v)

Tree T
 rank(T): rank (degree) of root node of T

Heap H:
* rank(H): maximum degree (#children) of any node in H

Assumption (n: number of nodes in H):

L rank (H)\SIQJ

— for a known function D (n)

Algorithm Theory, WS 2019/20 Fabian Kuhn

11



UNI

Merging Two Trees

FREIBURG

Given: Heap-ordered trees T, T' with rank(T) = rank(T")

* Assume: min-key of T < min-key of T’

Operation link(T,T'): link
T / \ T’

e Removes tree T' from root list

and addS TI to Chlld IISt OfT @K@ ................................. ’QKQ

e rank(T) :=rank(T) + 1
o (T'.mark = false) | = O—@——smmmmmomomones O {0

Algorithm Theory, WS 2019/20 Fabian Kuhn 12



Consolidate Example

link

@ B B g ------ ----- &0 3

©
19 (@

Algorithm Theory, WS 2019/20 Fabian Kuhn



Consolidate Example

link

-------------------- TGO
2 @ ¥ @
5

Algorithm Theory, WS 2019/20 Fabian Kuhn




Consolidate Example

Algorithm Theory, WS 2019/20 Fabian Kuhn

15



Consolidate Example

link

Algorithm Theory, WS 2019/20 Fabian Kuhn

16



Consolidate Example

Algorithm Theory, WS 2019/20 Fabian Kuhn

17



Consolidate Example

Algorithm Theory, WS 2019/20 Fabian Kuhn

18



Consolidation of Root List

UNI
f

FREIBURG

Array A pointing to find roots with the same rank:

0 1 2 D(n)
Consolidate: :
. . L Time:
for i := 0 to D(n) do A[i] = null; O(|H.rootlist|+D(n))

while H.rootlist # null do ot(s) befre cousolidladp
T := “delete and return first element of H.rootlist”
while A[rank(T)] # null do
T' = Alrank(T)];
Alrank(T)] = null;
T == link(T,T")
Alrank(T)] =T
Create new H.rootlist and H. min

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

L 0 N O Uk WWDNRE



Operation Decrease-Key

UNI
f

FREIBURG

Decrease-Key(v, x): (decrease key of node v to new value x)
- &

1. ifx = v.key then return;

2. v.akey := x; update H. min,;

3. ifv e H.rootlist V x > v.parent. key then return

4. repeat

5. parent = v.parent; C§

6. H.cut(v);, =— &

7. v = parent; )_;9_\ fp ok st
8. until =(v.mark) VvV v € H.rootlist; 88>

.

-

XD V. =X
if v € H.rootlist then v. mark := true; / // E 4

Algorithm Theory, WS 2019/20 Fabian Kuhn 20



Operation Cut(v)

UNI
f

FREIBURG

Operation H. cut(v):

e Cuts v’s sub-tree from its parent and adds v to rootlist

if v & H.rootlist then
// cut the link between v and its parent

v.parent := null;

A A T o

rank(v.parent) = rank(v.parent) — 1;
remove v from v.parent. child (list)

add v to H. rootlist;\v.mark := false;

Algorithm Theory, WS 2019/20

1

as (U
cut(v) > 2y (3
31

Fabian Kuhn

________ 9
19 (@

s

21



Decrease-Key Example

UNI

FREIBURG

e Green nodes are marked

Algorithm Theory, WS 2019/20 Fabian Kuhn

22



UNI

Fibonacci Heaps Marks

FREIBURG

 Nodes in the root list (the tree roots) are always unmarked
— If a node is added to the root list (insert, decrease-key), the
mark of the node is set to false.

 Nodes not in the root list can only get marked when a subtree
is cut in a decrease-key operation

* Anode vis marked if and only if v is not in the root list and v
has lost a child since v was attached to its current parent

— a node can only change its parent by being moved to the root list

Algorithm Theory, WS 2019/20 Fabian Kuhn 23



Fibonacci Heap Marks

UNI
FREIBURG

History of a node v:

v is being linked to a node

a child of v is cut

a second child of v is cut

v.mark = false

v.mark = true

H.cut(v);
v.mark = false

* Hence, the boolean value v.mark indicates whether node v has
lost a child since the last time v was made the child of another

node.

 Nodes v in the root list always have v.mark = false

Algorithm Theory, WS 2019/20 Fabian Kuhn

24



UNI

Cost of Delete-Min & Decrease-Key

Delete-Min: ¥

1. Delete min. root r and add r. child to H.rootlist 6
time: 0(1)

2. Consolidate H.rootlist
time: O(length of H.rootlist + D(n))

e Step 2 can potentially be linear in n (size of H)

Decrease-Key (at node v):
1. If new key < parent key, cut sub-tree of node v

CQ)(m)(o\o

time: 0(1)
2. Cascading cuts up the tree as long as nodes are marked %
time: O (number of consecutive marked nodes) b
e Step 2 can potentially be linearinn (]

“Sov

Exercises: Both operations can take ®(n) time in the worst case!

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

FREIBURG



Cost of Delete-Min & Decrease-Key

UNI

FREIBURG

* Cost of delete-min and decrease-key can be O(n)...

— Seems a large price to pay to get insert and merge in O(1) time

 Maybe, the operations are efficient most of the time?

— |t seems to require a lot of operations to get a long rootlist and thus,
an expensive consolidate operation

— In each decrease-key operation, at most one node gets marked:
We need a lot of decrease-key operations to get an expensive
decrease-key operation

* Can we show that the average cost per operation is small?

* We can =2 requires amortized analysis

Algorithm Theory, WS 2019/20 Fabian Kuhn

26



UNI

Fibonacci Heaps Complexity

FREIBURG

* Worst-case cost of a single delete-min or decrease-key
operation is Q(n)

* Can we prove a small worst-case amortized cost for
delete-min and decrease-key operations?

Recall:
* Data structure that allows operations Oy, ..., Oy

* We say that operation 0,, has amortized cost a,, if for every
execution the total time is

K
T < E ny - ay,
= > ==
p=1

where n,, is the number of operations of type 0,

- =
Algorithm Theory, WS 2019/20 Fabian Kuhn 27



Amortized Cost of Fibonacci Heaps

* Initialize-heap, is-empty, get-min, insert, and merge
have worst-case cost O(1l) aud awsctsied cosd O - o(7)

* Delete-min has amortized cost O(logn)

* Decrease-key has amortized cost O(1)

e Starting with an empty heap, any sequence of n operations
with at most n; delete-min operations has total cost (time)

T =0n+nyzlogn).

e We will now need the marks...

 Cost for Dijkstra: O(|E| + |V]log|V]|)
f&v‘wusba: O( &l (G%lVO

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG



UNI

Fibonacci Heaps: Marks

FREIBURG

Cycle of a node:

1. Node vis removed from root list and linked to a node
v.mark = false

2. Child node u of v is cut and added to root list
v.mark := true

3. Second child of v is cut

node v is cut as well and moved to root list
v.mark = false

The boolean value v. mark indicates whether node v has lost a
child since the last time v was made the child of another node.

Algorithm Theory, WS 2019/20 Fabian Kuhn 29



UNI

Potential Function Cb:2+m

FREIBURG

System state characterized by two parameters:
* R:number of trees (length of H.rootlist)

 M: number of marked nodes (not in the root list)

Potential function: ' 43' C-

Example:

* R=7,M=2 - &=11

Algorithm Theory, WS 2019/20 Fabian Kuhn 30



Actual Time of Operations

UNI

FREIBURG

* Operations: initialize-heap, is-empty, insert, get-min, merge
actual time: 0(1)

— Normalize unit time such that

tinit: tis—empty: tinsert» tget—miru tmerge <1

e

* Operation delete-min:
— Actual time: O(Iength of H.rootlist + D(n))

——

— Normalize unit time such that
tael—min < D(n) + length of H.rootlist

—_—

* Operation descrease-key:
— Actual time: O(length of path to next unmarked ancestor)

— Normalize unit time such that

taecr—key < length of path to next unmarked ancestor

Algorithm Theory, WS 2019/20 Fabian Kuhn

31



Amortized Times

UNI

FREIBURG

Assume operation i is of type:

* initialize-heap:
— actualtime: t; < 1, potential: ®;_; = ®; =0
— amortized time: a; = t; + P, —’CD:-_l <1

* is-empty, get-min:
— actualtime: t; < 1, potential: ®; = ®;_, (heap doesn’t change)
— amortized time: a; = t; + ¢; —P;_1 <1

°* merge:
— Actual time: t; <1
— combined potential of both heaps: ®; = &;_4
— amortized time: q; = ¢; + ¢; —d;_; <1

Algorithm Theory, WS 2019/20 Fabian Kuhn

32



Amortized Time of Insert

UNI
f

FREIBURG

Assume that operation i is an insert operation:
* Actualtime:t; <1 d)S L+ 2™

 Potential function:

— %remains unchanged (no nodes are marked or unmarked, no marked
nodes are moved to the root list)

— R grows by 1 (one element is added to the root list)
===

Mi — Mi—l) Ri — Ri—l + 1
CI)i —_ cI)i—l + 1

e Amortized time:

Cli:ti+(l)i—(pi_1§2

—

Algorithm Theory, WS 2019/20 Fabian Kuhn 33



Amortized Time of Delete-Min

UNI

FREIBURG

Assume that operation i is a delete-minlﬂzgeration:
o?.

Actual time: t; < D(n) + |H.rootlist| iy = W ooot(s}] a—

R < D +)
Potential function ® = R + 2M° p

* R:changes from |H. rootllstl toatmost D(n) +1 Zax-
* M: (# of marked nodes that are not in the root list) L8

— Number of marks does not increase

M; = M;_;, Ri <R,_; +D(n) + 1 — |H.rootlist|,

O, <P, +D(n)+1- |H.rootlist],

Amortized Time:
a; =t; + (I)i — q)i—l < ZD(n) +1
N\
Dhar+ [Hwstlsh] + P4y = | H ostlsd)

Algorithm Theory, WS 2019/20 Fabian Kuhn

34



Amortized Time of Decrease-Key

UNI

Assume that operation i is a decrease-key operation at node u:

Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R + 2M:

* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

v il be wr(vd (c( b m oot (?9‘})

wlkg ufu,,..., u, are waﬂ(

#uur@ K, -'-‘-—L
Huarlg Sd £ |

“; ~Hi < =~k =--)

.

Algorithm Theory, WS 2019/20 Fabian Kuhn

RR=QZ-|+ k"“

—

35

FREIBURG



Amortized Time of Decrease-Key

UNI
FREIBURG

Assume that operation i is a decrease-key operation at node u:
Actual time: t; < length of path to next unmarked ancestor v

Potential function ® = R 4+ 2M:
-
* Assume, node u and nodes uq, ..., U, are moved to root list

— U4, ..., U are marked and moved to root list, v. mark is set to true

> k marked nodes go to root list, < 1 node gets newly marked
* Rgrowsby<k+ 1, M grows by 1 and is decreased by = k

RiSRi_1+k+1, Ml'SMl'_1+1_k
D, <b,_ +(k+1)-2k—-1)=d, ,+3—k

-

Amortized time:
ai=ti+¢i—<bi_1§k+1+3—k=4

_—

Algorithm Theory, WS 2019/20 Fabian Kuhn 36



Complexities Fibonacci Heap

—_—

|
FRE:BURG

UNI

* Initialize-Heap: 0(1)

* |s-Empty: 0(1)

* Insert: 0(1)

* Get-Min: 0(1)

* Delete-Min:  0(D(n)) .
e> amortized

* Decrease-Key: 0(1)

* Merge (heaps of sizemandn, m < n): 0(1)

* How large can D(n) get?
—

Algorithm Theory, WS 2019/20 Fabian Kuhn 37



UNI
f

FREIBURG

Rank of Children

Lemma:

Consider a node v of rank k and let uq, ..., u; be the children of
v in the order in which they were linked to v. Then,

rank(u;) > i — 2.

Proof:

—® I‘av& (U;) P4 i"“
———

Algorithm Theory, WS 2019/20 Fabian Kuhn 38



Size of Trees

UNI
FREIBURG

Fibonacci Numbers:
F, =0, F, =1, Vk =2 2:F, = F,_1 + F;,_,

Lemma:
In a Fibonacci heap, the size of the sub- tree of a node v with

rank k is at least Fy, .. Py
ao ° S sz

Proof:

. ﬁ: minimum size of the sub—tree of a node of rank k
naerl 4o show At Sy 2 Fonz

So=1, 5,772
kP,?_

z 24 2’3
) b,,‘rrw.(ew«w\q

Algorithm Theory, WS 2019/20 Fabian Kuhn 39



Size of Trees

UNI

So=1, S, =2, Vk22:5k22+25i
=0

e Claim about Fibonacci numbers:

Bose, L-0 = T,=| +
- |\=o bt
Mo T, =F +F, =F«1+ &F
(L>0) ——
TH,
4okt
-|~&“ = |4 +;
(<0

Algorithm Theory, WS 2019/20 Fabian Kuhn

k

VkEO:Fk+2=1+2Fi y.
‘ (Y T i=0

7@”““‘“1 (lgV) tnducdiou a«qo&,) L=0

i:i::l—":ﬂ, = | /

\

J

/

i

=/

40

FREIBURG



Size of Trees

FREIBURG

k-2 T ko
SO=1,51=2,Vk22:Sk22+ZSi, Fk+2—1+ZFi
=0 i=0
—
 Claim of lemma: S, = Fy.» —
\ud. o b

' 7‘— = _/
Tuse: (L=0,1) L -0 SOZ:FZ:‘ // bt : S,2F,=2

. e L-2 (I4) ez
. 27242 T

(Lo '7 Sk z 2+ 23, /g 2 % +2
e —
=/ + Z ‘f‘)-

=2

L . —
= \ + 24—3 = -‘.2.4-2

)>=0 ===

(=0

)

Algorithm Theory, WS 2019/20 Fabian Kuhn 41




Size of Trees

UNI
f

FREIBURG

Lemma:
In a Fibonacci heap, the size of the sub-tree of a node v with rank k
is at least Fy, 5.

Theorem:
The maximum rank of a node in a Fibonacci heap of size n is at most

?LD (n) = O(log n)}

Proof: 0

* The Fibonacci numbers grow exponentially: /

1 [(1+V5\" [1-+5
w7 ()

- \'\ W’ QA’P.
 ForD(n) = k, we needn = Fj,,, nodes.
— — - ——

k

Algorithm Theory, WS 2019/20 Fabian Kuhn 42



Summary: Binary and Fibonacci Heaps

UNI
FREIBURG

initialize
insert
get-min
delete-min
decrease-key
merge

is-empty

Algorithm Theory, WS 2019/20

Binary Heap
0(1)
O(logn)
0(1)
O(logn)
O(log n)
O(m-logn)
0o(1)

Fabian Kuhn

Fibonacci Heap

0(1)
0(1)
0(1)

O(logn) *

0(1) *
0(1)
0(1)

k . N
amortized time

_—
——N

43



