Chapter 5
Data Structures

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG

Minimum Spanning Trees

UNI

FREIBURG

 Minimum spanning tree (MST) problem
— Classic graph-theoretic optimization problem

* Given: weighted graph
* Goal: spanning tree with min. total weight

* Several greedy algorithms work

~

*| Kruskal’s algorithm:
— Start with empty edge set

— As long as we do not have a spanning tree:
L add minimum weight edge that doesn’t close a cycle

Algorithm Theory, WS 2019/20 Fabian Kuhn

Minimum Spanning Trees

UNI
f

FREIBURG

Prim Algorithm: / [

1. Start with any node v (v is the initial component)

2. In each step:
Grow the current component by adding the minimum weight
edge e connecting the current component with any other node

Kruskal Algorithm:

1. Start with an empty edge set

2. In each step:
Add minimum weight edge e such that e does not close a cycle

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Implementation of Prim Algorithm

|
FRE:BURG

UNI

Start at node s, very similar to Dijkstra’s algorithm:
1. Initialize cig) =0andd(v) = forallv #s
2. Allnodes s = v are unmarked

add N wedes &D awn Qw(}? rr ?\Mem Q d(v))

3. Get unmarked node u which minimizes cLu):

ge} RO /dﬂ(ﬁl{ ::‘:E:& [

4. / Foralle ={uv v} €EE, d(v) —[mm{d(v) W(e)ﬂ
?o)&.&wa««? u\(-/al(Acw r(wz‘;was o{ u — deecrease (:e?

: mark node u
5 e Gt T bape)
O(w + wlogn)

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

6. Until all nodes are marked

Implementation of Prim Algorithm

UNI

FREIBURG

Implementation with Fibonacci heap:
* Analysis identical to the analysis of Dijkstra’s algorithm:

O (n) insert and delete-min operations

O (m) decrease-key operations

* Runningtime: O(m + nlogn)

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI

Kruskal Algorithm

FREIBURG

1 - - 1. Start with an
empty edge set

; @

ON 2. In each step:
14 Add minimum
weight edge e
2 such that e does

(7
31 not close a cycle
12
20

16

Iy o

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Implementation of Kruskal Algorithm

UNI

FREIBURG

1. Go through edges in order of increasing weights

O o)
(2.\ For each edge e: @ =Ju,v{

if e does not close a cycle then
ned do chade ?& e doos a C?c(l
d

(/(A_Q(&“QQ\IM\U«M;&W& 3

(oumb& COw«?m»:
add e to the current solution

add fuv}
wed do WAL me‘;mds

0& w v

Algorithm Theory, WS 2019/20 Fabian Kuhn

Sec(' Qoqys %'a WOAKL') :

L

(

il km{hh ar W
‘u;\\s Uk‘sk" \6(Chqf L2

)

Union-Find Data Structure

UNI
FREIBURG

Also known as Disjoint-Set Data Structure...
©

O ~©

 make_set(x): create a new set that only contains element x

Manages partition of a set of elements

Sy,

* set of disjoint sets

Operations:

* find(x): return the set containing x

* union(x,y): merge the two sets containing x and y

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Implementation of Kruskal Algorithm

UNI

FREIBURG

1. [Initialization:
For each node v: make_set(v)

2. Go through edges in order of increasing weights:

Sort edges by edge weight

3. Foreachedge e = {u, v}:

if find(u) # find(v) then

add e to the current solution

union(u, v)

—

Algorithm Theory, WS 2019/20 Fabian Kuhn

H opoadias

wike-sed « V]

fd o 21B) —
urew ¢ |V =)

Managing Connected Components

UNI
f

FREIBURG

* Union-find data structure can be used more generally to manage
the connected components of a graph

... if edges are added incrementally

* make_set(v) for every node v
* find(v) returns component containing v

* union(u, v) merges the components of u and v
(when an edge is added between the components)

* (Can also be used to manage biconnected components

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Basic Implementation Properties

UNI

Representation of sets:

* Everyset S of the partition is identified with a representative,
by one of its members x € S

Operations:
* make_set(x): x is the representative of the new set {x}

* find(x): return representative of set S, containing x

* union(x,y): unites the sets S, and S,, containing x and y and
returns the new representatlve of Sy U S,

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

FREIBURG

Observations

UNI
f

FREIBURG

Throughout the discussion of union-find:

* n:total number of make_set operations

-

* m: total number of operations (make_set, find, and union)

Clearly:
* mz=2n

* There are at most n — 1 union operations

—

Remark:

 We assume that the n make_set operations are the first n
operations

— Does not really matter...

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

UNI

Linked List Implementation

FREIBURG

Each set is implemented as a linked list:

* representative: first list element (all nodes point to first elem.)
in addition: pointer to first and last element

a & cL D
—AE—>12—> 8 —m43— 1

= <)
v | |
—> 9 — 15— 7
4

* sets: {1,5,8,12,43},{7,9,15}; representatives: 5,9

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Linked List Implementation

|
FRE:BURG

UNI

make_set(x):
 (Create list with one element:

time: 0(1) —

find(x):

e Return first list element: 'hl | |

time: 0(1)

——>y—>a—>x—>b

Algorithm Theory, WS 2019/20 Fabian Kuhn

14

Linked List Implementation :

UNI
FREIBURG

union(x,y):

* Append list of y to list of x: c\
T —_—

\ 4

Lol

| |/_\b;b/ —

>b>_.2_C_>C U%E_dée—)y

¢@\}

>b—>x—>c—>d—>e—>y

x

Time: O(length of list of y)
——
Algorithm Theory, WS 2019/20 Fabian Kuhn 15

URG

Cost of Union (Linked List Implementation) _z

zI.I.I
o5&

Total cost for n — 1 union operations can be @(n?):

« make_set(x,), make_set(x,), ..., make_set(xy,),
union(x,_1, x,), union(x,_», X,_1), ..., union(xy, x,)

o
R
Xl Xy)(3 X o Xn-'()('"3 Y”""—)\L"' 1

#ng«“w | +2+3+ . 40n-) = OW)

— av?. cosJ (721 BV : O)

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Weighted-Union Heuristic

UNI
FREIBURG

* In a bad execution, average cost per union can be 0(n)

* Problem: The longer list is always appended to the shorter one

Idea:
* In each union operation, append shorter list to longer one!

Syl})

Cost for union of sets S, and S, O(mln{lS |,

Theorem: The overall cost of m operations of which at most n are
make_set operationsis O(m + nlogn).

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

ﬁs

Weighted-Union Heuristic ——

UNI

FREIBURG

Theorem: The overall cost of m operations of which at mostn

are make_set operationsis O(m + nlogn).

Proof:

Il cont o wake-sed & Gl opuedions : O(iw)
/MM(“4«1 Ha(Cos] o{ *&L UL 8 oeem\\ws

Cound H Tepr Vo?uh)" ceclirechisus
Couside a J?;no(ot x

Ylow o-(ku Jo we waed rolired- E}
oo veph goteW &y —

.
e P

Siie ¥ seb conboting X 4 (s} Lowbles

s ~»®J‘ n redinecdisus i('b“‘

=fobnl 4 vepr gt el -0(“%0
_

Algorithm Theory, WS 2019/20 Fabian Kuhn

) Keuskal's <ly

Sork*b ;O (m Gf"\)

Wit ;'Pi“”(pa e

O(w + V\fo‘sn)

18

Disjoint-Set Forests

UNI
f

FREIBURG

o
® @
®

-

0N

* Represent each set by a tree

* Representative of a set is the root of the tree

Algorithm Theory, WS 2019/20

Fabian Kuhn

@

19

UNI
f

FREIBURG

Disjoint-Set Forests

make_set(x): create new one-node tree @

o

find(x): follow parent point to root 0)
(parent pointer to itself)

union(x, y): attach tree of x to tree of y

g0

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

UNI

Bad Sequence

FREIBURG

Bad sequence leads to tree(s) of depth O(n)

« make_set(x,), make_set(x,), ..., make_set(xy,),
union(xq, x,), union(x¢, x3), ..., union(xy, x,,)

0

Algorithm Theory, WS 2019/20 Fabian Kuhn 21

Union-By-Size Heuristic

UNI
FREIBURG

Union of sets $; and §5:

* Root of trees representing 5; and 5;: 1y and 1,

* W.l.o.g., assume that |S;| = |S,]|

* RootofS; US,: 1 (1, is attached to r; as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case
cost of a find-operation is O(logn)

Proof: dcp-w\ D'f hea with L vodes s ,&5 L “>
Jeghs of elowst x s dy ._—=u s..\eajm Cod. x 2 2
< w(uu J,, w5 '
(9 o/ {low can 4, 5«»0 /°\\/,,\M gm‘z«v%i?a/ad
— /AN gows by ({;Aﬂ z2 2

Similar Strategy: union-by-rank

* rank: essentially the depth of a tree

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

Union-Find Algorithms

UNI

FREIBURG

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

* make_set: worst-case cost O(1)

e find : worst-case cost 0(1)

* union :amortized worst-case cost O(logn)«—

Disjoint-Set Forest with Union-By-Size Heuristic:

* make_set: worst-case cost O(1)
e find : worst-case cost O(logn)s—
* union :worst-case cost O(logn)<«—

Can we make this faster?

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Path Compression During Find Operation _

FRE:BURG

UNI

1. ifa # a.parent then

2. a.parent = find(a.parent)

3. return a.parent

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

UNI

Complexity With Path Compression

FREIBURG

When using only path compression (without union-by-rank):

Z W - (2«-')
= xé W -9
* n of which are make_set-operations

- at most n — 1 are union-operations
———.

m: total number of operations f
* f of which are find-operations

Total cost: O (1;1 +f- [log2+f/n nD = O(m +f- log2+m/nn)

| —
{ wo n

T mn 0’ fo sue cousd €70

RO R S
2+0t /‘SM s

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

e
Union-By-,%ffzé and Path Compression

UNI
f

FREIBURG

Theorem:

Using the combined union-by-rank and path compression

heuristic, the running time of m disjoint-set (union-find)
operations on n elements (at most n make_set-operations) is

@(21 - a(m, n)),

Where a(m, n) is the inverse of the Ackermann function.

53 aihwh? slw(-]

n praie t o(Mn) S &

Algorithm Theory, WS 2019/20

Tﬁm» eka(:? («st)‘

Kituska |

— Seidin
+6

\A\u‘uw-g:»o‘ ‘mlt a\lv\wy(w\,m))

Fabian Kuhn

26

Ackermann Function and its Inverse

UNI

FREIBURG

Ackermann Function:

Fork,f > 1, _
(2¢, _ ifk=1¢2>1
Ak,) = A(k —1,2), ifk>1¢=1
— A(k-LAKt-1), ifk>1¢>1

Inverse of Ackermann Function:

a(m,n) = min{k > 1| A(k,|""/n]) > log, n}

Algorithm Theory, WS 2019/20 Fabian Kuhn

27

UNI

Inverse of Ackermann Function

FREIBURG

e a(m,n) :=min{k > 1| Ak, |™/nl) > log, n} «—
m=n= Alk,|™/n]) = A(k,1) = a(m,n) < min{k > 1|A(k,1) > logn}

. AL, 0) =2% A(k,1) =A(k—12)"
Alk,£) = A(k — 1, ACk, £ — 1)) «—

AQN) = AN2)= 4 o e 2"
AGY) = A,2) = AC1, AO) =AU = 2= 16 A(zb/s)
Al) = ABD= A2, A,)= A= AQ, AZE) = 2
2
= /" 6
A4 = A3, A4) ;2
10%= 2*°

Algorithm Theory, WS 2019/20 Fabian Kuhn 28

