

Chapter 5 Data Structures

Algorithm Theory WS 2019/20

Fabian Kuhn

Minimum Spanning Trees

- Minimum spanning tree (MST) problem
 - Classic graph-theoretic optimization problem
- **Given**: weighted graph
- **Goal**: spanning tree with min. total weight
- Several greedy algorithms work
- Kruskal's algorithm:Start with empty edge setAs long as we do not have a spanning tree: add minimum weight edge that doesn't close a cycle

Minimum Spanning Trees

Prim Algorithm:

- 1. Start with any node v (v is the initial component)
- 2. In each step: Grow the current component by adding the minimum weight edge e connecting the current component with any other node

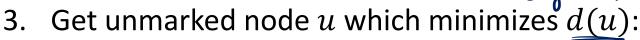
Kruskal Algorithm:

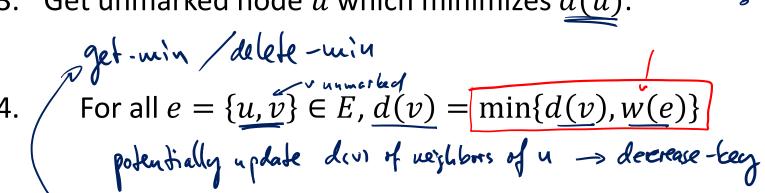
- 1. Start with an empty edge set
- 2. In each step: Add minimum weight edge e such that e does not close a cycle

Implementation of Prim Algorithm

Start at node s, very similar to Dijkstra's algorithm:

- Initialize $d(\underline{s}) = 0$ and $d(\underline{v}) = \infty$ for all $v \neq s$
- 2. All nodes $s \geq v$ are unmarked





mark node u

Lotine (with Fib. heaps) $O(m + u \log n)$

Until all nodes are marked

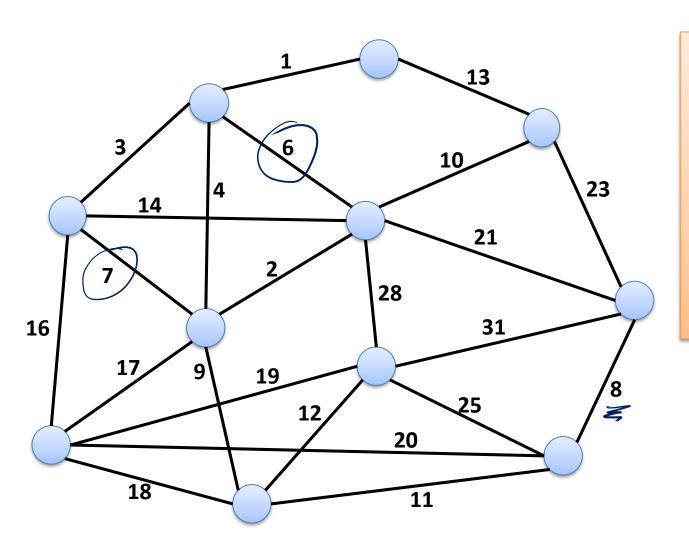
$$O(m + n \log n)$$

Implementation of Prim Algorithm

Implementation with Fibonacci heap:

- Analysis identical to the analysis of Dijkstra's algorithm:
 - O(n) insert and delete-min operations
 - O(m) decrease-key operations
- Running time: $O(m + n \log n)$

Kruskal Algorithm



- 1. Start with an empty edge set
- 2. In each step:
 Add minimum
 weight edge e
 such that e does
 not close a cycle

Implementation of Kruskal Algorithm

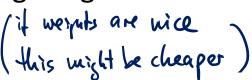
1. Go through edges in order of increasing weights

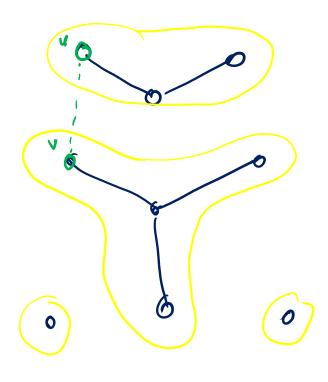
2. For each edge e: $e = \{u, v\}$

if e does not close a cycle then need to check if e closes a cycle

check if u k v are in the same connected component add e to the current solution add ?u,v}

need to merge the components of ukv



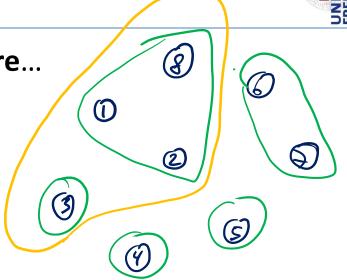


Union-Find Data Structure

Also known as **Disjoint-Set Data Structure**...

Manages partition of a set of elements

set of disjoint sets



Operations:

- make_set(x): create a new set that only contains element x
- find(x): return the set containing x
- union(x, y): merge the two sets containing x and y

Implementation of Kruskal Algorithm

1. Initialization:

For each node v: make_set(v)

- 2. Go through edges in order of increasing weights: Sort edges by edge weight
- 3. For each edge $e = \{u, v\}$:

 if $find(u) \neq find(v)$ then

 add e to the current solution

union(u, v)

```
# operations

make-set: IVI

find: 21E1 =-

union: |VI-1
```

Managing Connected Components

- Union-find data structure can be used more generally to manage the connected components of a graph
 - ... if edges are added incrementally
- $make_set(v)$ for every node v
- find(v) returns component containing v
- union(u, v) merges the components of u and v (when an edge is added between the components)
- Can also be used to manage biconnected components

Basic Implementation Properties

Representation of sets:

• Every set S of the partition is identified with a representative, by one of its members $x \in S$

Operations:

- make_set(x): x is the representative of the new set {x}
- find(x): return representative of set S_x containing x
- union(x, y): unites the sets S_x and S_y containing x and y and returns the new representative of $S_x \cup S_y$

Observations

Throughout the discussion of union-find:

- n: total number of make_set operations
- \underline{m} : total number of operations (make_set, find, and union)

Clearly:

- $m \ge n$
- There are at most n-1 union operations

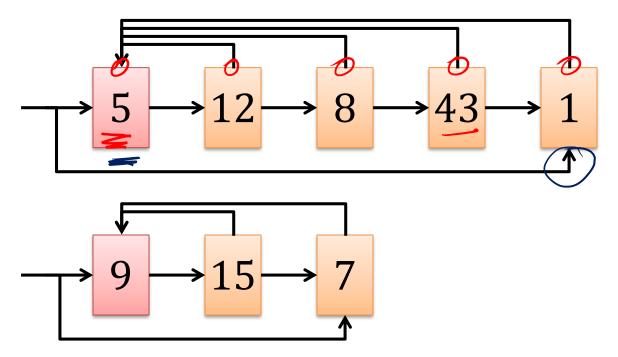
Remark:

- We assume that the \underline{n} make_set operations are the first n operations
 - Does not really matter...

Linked List Implementation

Each set is implemented as a linked list:

representative: first list element (all nodes point to first elem.)
 in addition: pointer to first and last element



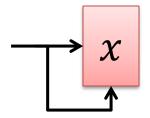
• sets: {1,5,8,12,43}, {7,9,15}; representatives: 5, 9

Linked List Implementation

$make_set(x)$:

Create list with one element:

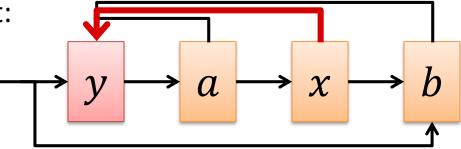
time: O(1)



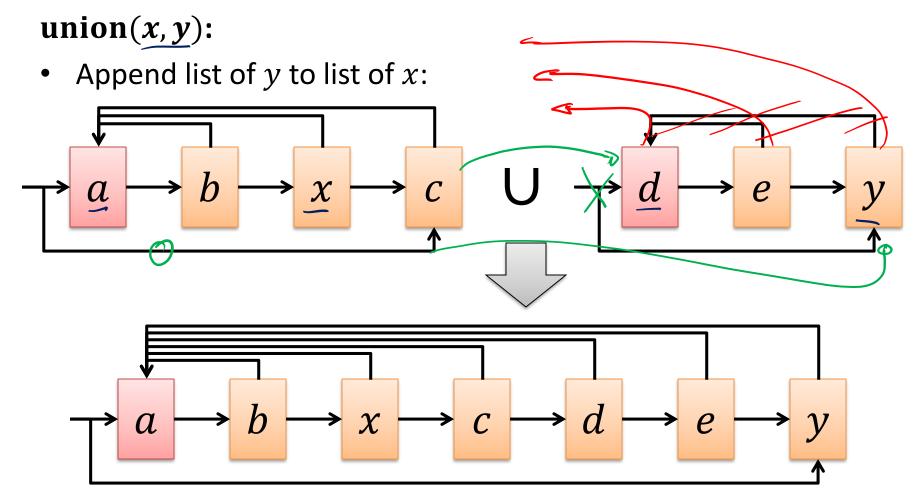
find(x):

Return first list element:

time: O(1)



Linked List Implementation



Time: O(length of list of y)

Cost of Union (Linked List Implementation)

Total cost for n-1 union operations can be $\Theta(n^2)$:

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_{n-1}, x_n), union(x_{n-2}, x_{n-1}), ..., union(x_1, x_2)

$$X_1$$
 X_2 X_3 X_4 \cdots X_{n-q} X_{n-3} X_{n-2} X_{n-1} X_n

operations
$$1+2+3+...+n-1 = \Theta(u^2)$$

avg. cost per op. :
$$\theta(n)$$

Weighted-Union Heuristic

- In a bad execution, average cost per union can be $\Theta(n)$
- Problem: The longer list is always appended to the shorter one

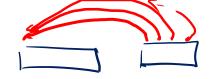
Idea:

In each union operation, append shorter list to longer one!

Cost for union of sets
$$\underline{S_x}$$
 and $\underline{S_y}$: $O(\min\{|S_x|, |S_y|\})$

Theorem: The overall cost of m operations of which at most n are make_set operations is $\underline{O(m + n \log n)}$.

Weighted-Union Heuristic



Theorem: The overall cost of m operations of which at most n are make_set operations is $O(\underline{m} + n \log n)$.

Proof:

total cost of make-set & find operations: O(m)

Need to bound the total cost of the union operations

Count # "repr pointer" redirections

Conside a fixed element x How often do we need to redirect

the repr. pointer of x

Site of set containing x at least doubles

= ≤ log_N redirections forx

== total # repr. ptr. redir = 0 (u lgn)

Kruskal's alg Sorting: O(m logn)

Union-find part:

O(m + n/ogn)

Disjoint-Set Forests

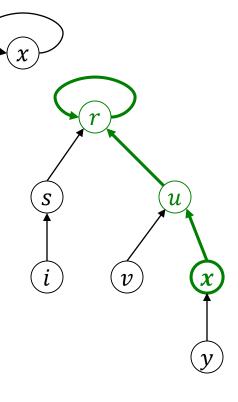


- Represent each set by a tree
- Representative of a set is the root of the tree

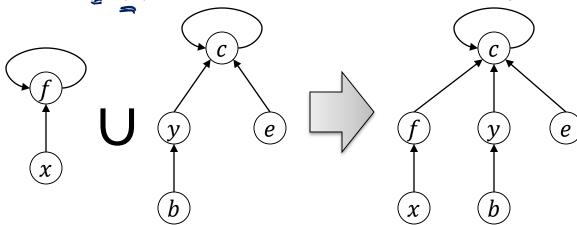
Disjoint-Set Forests

make_set(x): create new one-node tree

find(x): follow parent point to root
 (parent pointer to itself)



union(x, y): attach tree of x to tree of y



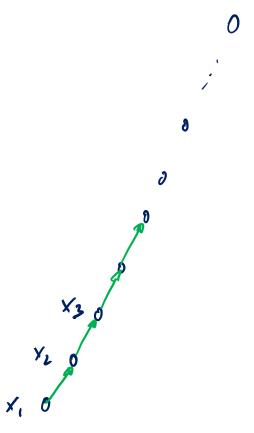
Algorithm Theory, WS 2019/20

Fabian Kuhn

Bad Sequence

Bad sequence leads to tree(s) of depth $\Theta(n)$

• make_set(x_1), make_set(x_2), ..., make_set(x_n), union(x_1, x_2), union(x_1, x_3), ..., union(x_1, x_n)



Union-By-Size Heuristic

Union of sets S_1 and S_2 :

- Root of trees representing $\underline{S_1}$ and $\underline{S_2}$: r_1 and r_2
- W.I.o.g., assume that $|S_1| \ge |S_2|$
- Root of $S_1 \cup S_2$: r_1 (r_2 is attached to r_1 as a new child)

Theorem: If the union-by-size heuristic is used, the worst-case

cost of a find-operation is $O(\log n)$

Proof: depth of thee with k nodes is $\leq log_2 k$ depth of element x is $d_x = sine of thee cont. <math>x \geq 2^{d_x}$ $d_x = 0$ How can d_x grow?

Similar Strategy: union-by-rank

rank: essentially the depth of a tree

Union-Find Algorithms

Recall: m operations, n of the operations are make_set-operations

Linked List with Weighted Union Heuristic:

make_set: worst-case cost O(1)

• find : worst-case cost O(1)

• union : amortized worst-case cost $O(\log n)$

Disjoint-Set Forest with Union-By-Size Heuristic:

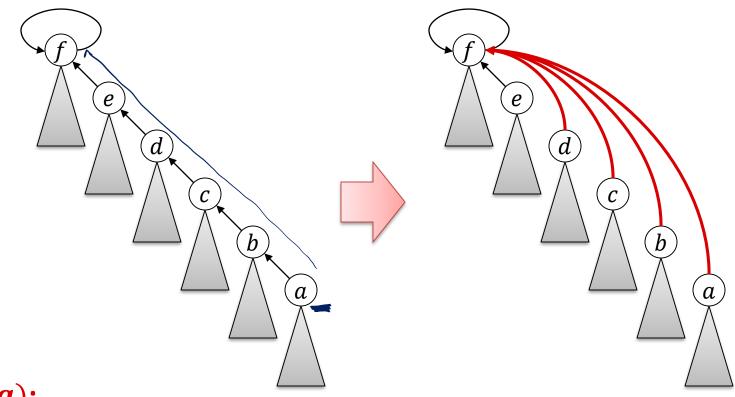
• make_set: worst-case cost O(1)

• find : worst-case cost $O(\log n)$

• union : worst-case cost $O(\log n)$

Can we make this faster?

Path Compression During Find Operation



find(a):

- 1. if $a \neq a$. parent then
- 2. a.parent := find(a.parent)
- 3. **return** *a.parent*

Complexity With Path Compression

When using only path compression (without union-by-rank):

m: total number of operations

- *f* of which are find-operations
- f = m (2n-1) f = m - n
- n of which are make_set-operations \rightarrow at most n-1 are union-operations

Total cost:
$$O\left(\frac{m+f\cdot \lceil \log_{2+f/n} n \rceil}{p}\right) = O\left(\frac{m+f\cdot \log_{2+m/n} n}{p}\right)$$

$$\downarrow \quad m > n$$

Union-By-Size and Path Compression

Theorem:

Using the combined union-by-rank and path compression heuristic, the running time of m disjoint-set (union-find) operations on n elements (at most n make_set-operations) is

$$\Theta(\underline{m}\cdot\alpha(m,n)),$$

Where $\underline{\alpha(m,n)}$ is the inverse of the Ackermann function.

in practice:
$$\alpha(m,n) \leq 4$$

Ackermann Function and its Inverse

Ackermann Function:

For
$$k, \ell \geq 1$$
,
$$\underbrace{A(k,\ell)}_{A(k,\ell)} \coloneqq \begin{cases} 2^{\ell}, & \text{if } k = 1, \ell \geq 1 \\ A(k-1,2), & \text{if } k > 1, \ell = 1 \\ A(k-1,\underline{A(k,\ell-1)}), & \text{if } k > 1, \ell > 1 \end{cases}$$

Inverse of Ackermann Function:

$$\alpha(m,n) := \min\{k \geq 1 \mid \underline{A(k,\lfloor m/n\rfloor)} > \log_2 n\}$$

Inverse of Ackermann Function

- $\alpha(m,n) := \min\{k \ge 1 \mid A(k,\lfloor^m/n\rfloor) > \log_2 n\} \Leftrightarrow$ $m \ge n \Rightarrow A(k,\lfloor^m/n\rfloor) \ge A(k,1) \Rightarrow \alpha(m,n) \le \min\{k \ge 1 \mid A(k,1) > \log n\}$
- $A(1,\ell) = 2^{\ell}$, A(k,1) = A(k-1,2), $A(k,\ell) = A(k-1,A(k,\ell-1))$ \leftarrow

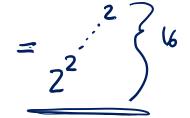
$$A(2,1) = A(1,2) = 4$$

$$A(3,1) = A(2,2) = A(1, A(2,1)) = A(1,4) = 2^{4} = 16$$

$$A(3,1) = A(3,2) = A(2,A(3,1)) = A(2,16) = A(1,A(2,15)) = 2$$

$$A(2,17) = 2^{A(2,17)} = 2^{A(2$$

$$A(4,2) = A(3, A(4,17))$$



$$10^{80} = 2^{250}$$