Chapter 6
Graph Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG

Example: Flow Network

UNI

FREIBURG

20

10

Algorithm Theory, WS 2019/20 Fabian Kuhn

10

20

UNI
f

FREIBURG

Residual Graph

Given a flow network G = (V, E') with capacities c, (for e € E)

For a flow f on G, define directed graph G = (Vf, Er) as follows:
* Node s; Ve =V -
* Foreachedgee = (u,v) in E, there are two edges in Ef:
— forward edge e = (u, v) with residual capacity ¢, — f (e)
— backward edge e’ = (v, u) with residual capacity f(e)—

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI

Augmenting Path

FREIBURG

Definition:
An augmenting path P is a (simple) s-t-path on the residual
graph G¢ on which each edge has residual capacity > 0.

bottleneck(ﬂ): minimum residual capacity on any edge of the
augmenting path P

Augment flow f to get flow f':
* For every forward edge (u,v) on P:

f'((w,v)) = f((u,v)) + bottleneck(P, f)

* For every backward edge (u,v) on P:

f'((ww) = f((v,w) - bottleneck(P, f)

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

UNI

Ford-Fulkerson Algorithm

FREIBURG

* Improve flow using an augmenting path as long as possible:

1. Initially, f(e) = Oforalledgese € E, Gr = G

2. while there is an augmenting s-t-path P in G¢ do
3 Let P be an augmenting s-t-path in Gr;

4. f' = augment(f, P);

5 update f to be f;

6 update the residual graph G¢

7. end;

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

UNI

Ford-Fulkerson Running Time

FREIBURG

Theorem: If all edge capacities are integers, the Ford-Fulkerson
algorithm can be implemented to run in O (mC) time.

Proof:

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

s-t Cuts

UNI
f

FREIBURG

Definition:
An s-t cut is a partition (4, B) of the vertex set such thats € A

andt € B
@ 20
A » 20 Q

15 0 o 15 B

5 5 t
10

& sl

15

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

UNI

Cut Capacity

FREIBURG

Definition:
The capacity c(A4, B) of an s-t-cut (4, B) is defined as

c(A,B) = z Ce.
@ 20 eoutof A

20
A u (v)

15
0 20 5 B
— 210
15

& =l

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Max-Flow Min-Cut Theorem

UNI
FREIBURG

Theorem: (Max-Flow Min-Cut Theorem)

In every flow network, the maximum value of an s-t flow is
equal to the minimum capacity of an s-t cut.

Proof:

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Strongly Polynomial Algorithm

UNI
f

FREIBURG

* Time of regular Ford-Fulkerson algorithm with integer capacities:
O(mcC)

Time of algorithm with scaling parameter:
0(m?log C)

O(log C) is polynomial in the size of the input, but notinn

 Can we get an algorithm that runs in time polynomial in n?

rEways picking a shortest augmenting pathleads to running time
0(m?n) /

? — also works for arbltrary real-valued weights

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Other Algorithms

UNI

FREIBURG

* There are many other algorithms
problem, for example:

* Preflow-push algorithm:

to solve the maximum flow

— Maintains a preflow (V nodes: inflow > outflow)

— Alg. guarantees: As soon as we have a flow, it is optimal
— Detailed discussion in 2012/13 lecture
— Running time of basic algorithm: O0(m - n?)

— Doing steps in the “right” order: 0(n3)

* Current best known complexity:

— For graphs with m > n'*¢
(for every constant € > 0)

o(m)|

[King,Rao,Tarjan 1992/1994]

— For sparse graphs with m < n16/15-6 [Orlin, 2013]

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Maximum Flow Applications

UNI
FREIBURG

 Maximum flow has many applications

* Reducing a problem to a max flow problem can even be seen as
an important algorithmic technique

 Examples:

related network flow problems

computation of small cuts

computation of matchings

computing disjoint paths

scheduling problems

assignment problems with some side constraints

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Undirected Edges and Vertex Capacities _

UNI
FREIBURG

w v A
Undirected Edges: —o —> “C"

* Undirected edge {u, v}: add edges (u, v) and (v, u) to network

E—

Vertex Capacities:
* Not only edges, but also (or only) nodes have capacities

* Capacity ¢, of node v & {s, t}:
fin@) = £) <

* Replace node v by edge e, = {Vipn, Vout}:

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

UNI
FREIBURG

Minimum s-t Cut # @%@R

Given: undirected graph G = (V,E), nodes s, t € V

s-t cut: Partition (4, B) of V. suchthats € A,t € B

Size of cut (4, B): number of edges crossing the cut Tuciug Buee

=
S\'R’f K cuf C<n-i

Objective: find s-t cut of minimum size

Oweale gw uehnde . D) wale Qﬂsxs JLMCM —o — L >
Z) ey cag. = l
9“'& 0&,0\“ u é = Cap. cuol " g(w um{w»fk

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

Edge Connectivity

UNI

Definition: A graph G = (V,E) is k-edge connected for an integer
k = 1if the graph Gy = (V, E \ X) is connected for every edge set

CEI|X|<k-1.
haed 4o Rweve a+\¢ns+k,epg,zs RIS L scruned G.

2k Qdy aqu@L;R\L] /\(é} N
Wax k 9.*'-. (n\;

28) L ~ehp counecled

Goal: Compute edge connectivity A(G) of G
(and edge set X of size A(G) that divides G into = 2 parts)

* minimum set X is a minimum s-t cut forsome s,t €V
— Actually for all s, t in different components of Gy = (V,E \ X)

Huey L n*)

* Possible algorithm: fix s and find min s-t cutfor all t # S_

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

FREIBURG

Minimum s-t Vertex-Cut

UNI
FREIBURG

Given: undirected graph ¢ = (V,E), nodes s, t €V

s-t vertex cut: SetX C Vsuchthats,t € Xandsandtarein
different components of the sub- graph G[V \ X]induced by V' \ X

S' f t t: X /__,>.
ize of vertex cut: | X| < @@y

Objective: find s-t vertex-cut of minimum size

* Replace undirected edge {u, v} by (u, v) and (v, u)

 Compute max s-t flow for edge capacities co and node capacities

¢, =1forv#s,t
vz 3’ /L
* Replace each node v by v;, and v ¢: >/, ‘=< 22 “@”\)

* Min edge cut corresponds to min vertex cut in G

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Vertex Connectivity

UNI
FREIBURG

Definition: A graph G = (V,E) is k-vertex connected for an integer
k = 1if the sub-graph G|V \ X] induced by V' \ X is connected for
every edge set

XCV,|X|<k-1.
need 49 wuone. ak (@ast- b wedes 1o Liscounect G

Nedex Csuud\‘vi\t‘k_"‘ (¢):

\\; ;@ wmax & s
éi}@’\ G s E-vzrlvk Qua ,

Goal: Compute vertex connectivity k(G) of G
(and node set X of size k(G) that divides G into = 2 parts)

 Compute minimum s-t vertex cut forall sand all t # s

T)

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

-

Edge-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € V

Goal: Find as many edge-disjoint s-t paths as possible
.\0 a
AN

* Find max s-t flow in G with edge capacitiesc, = 1 foralle € E

e

Solution:

Flow f induces |f| edge-disjoint paths:
* Integral capacities 2 can compute integral max flow f

¢ Get|f]| edge—dgjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)

Algorithm Theory, WS 2019/20 Fabian Kuhn 18

Vertex-Disjoint Paths

UNI
f

FREIBURG

Given: Graph G = (V,E) withnodes s,t € I/

Goal: Find as manyLinternaIlylvertex-disjoint s-t paths as possible
.) .

0\0/0\0

Solution: 0

 Find max s-t flow in G with ngde capacitiesc, = 1 forallv eV

Flow f induces |f| vertex-disjoint paths:
* Integral capacities = can compute integral max flow f
* Get |f| vertex-disjoint paths by greedily picking them

* Correctness follows from flow conservation f1(v) = f°ut(v)

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

Menger’s Theorem

UNI

FREIBURG

Theorem: (edge version)
For every graph G = (V, E)) with nodes s,t € V, the size of the

minimum s-t (edge) cut equals the maximum number of pairwise
edge-disjoint paths from s to t.

Theorem: (node version)

For every graph G = (V, E) with nodes s,t € I/, the size of the
minimum s-t vertex cut equals the maximum number of pairwise
internally vertex-disjoint paths from s to t h

* Both versions can be seen as a special case of the max flow min
cut theorem

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

——

Baseball Elimination
| l l

UNI

FREIBURG

Losses To Play Against = 1;;

[; ?; ; NY Balt. T.Bay Tor.
NewYork | (&1) | 69 12 : 2 | 5 | 2 | 3
Baltimore 79 77 6 2 - 2 1 1

Tampa Bay 79 74 9 5 2 - 1 1
Toronto 76 80 6 2 1 1 - 2
@ 71 84 7 3 1 1 2 -

* Only wins/losses possible (no ties), winner: team with most wins

* Which teams can still win (as least as many wins as top team)?

* Boston is eliminated (cannot win):

— Boston can get at most 78 wins, New York already has 81 wins

* Ifforsomei,j: w; + 1, < wj; 2> team i is eliminated

» Sufficient condition, but not a necessary one!

Algorithm Theory, WS 2019/20 Fabian Kuhn

21

Baseball Elimination

UNI

Losses To Play Against = 1;;
?; T; Balt. T. Bay
< New York 69 12 - 2 5 2 3
Baltimore 79 77 6 2 - 2 1 1
—Tampa Bay _7_9_ 74 9 @ 2 - 1 1
Toronto 2 80 _E::_ 2 1 1 - 2
Boston 71 84 7 3 1 1 2 -

e Can Toronto still finish first?

* Toronto can get 82 > 81 wins, but:
NY and Tampa have to play 5 more times against each other
- if NY wins two, it gets 83 wins, otherwise, Tampa has 83 wins

e Hence: Toronto cannot finish first

* How about the others? How can we solve this in general?

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

FREIBURG

: W : ¥ wrivs s for
Max Flow Formulation " B ewdnio_ ot

UNI
FREIBURG

e Canteam 3 finish with most wins?
S

Remaining number team
of games between
the 2 teams

Number of wins team i can

game nodes have to not beat team 3
nodes

 Team 3 can finish first iff all source-game edges are saturated

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Reason for Elimination

Team Wins Losses To Play Against = 1;;
i w; ?; T; \'\ Balt. Bost. Tor
New York | T 75 59 28 - \ 3 8 7 3
Baltimore | | 71 63 28 3 > 2 7] 4
Boston | | 69| | 66 27 8 2 | > o | o
} Toronto | 63J 72 27 7 7 0 e 0
Detroit 49 86 27 3 4 0 0 -

e Detroit could finish with 49 + 27 =_7=Qwins
* Consider R = {NY, Bal, Bos, Tor}

— Have together already won w(R) = 278 games
— Must together win at least r(R) = 27 more games

: . 278+27
 On average, teams in R win ——— = 76.25 games
4 =

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

Reason for Elimination

UNI
FREIBURG

Wyt -W+ W43 -W, <

e Canteam 3 finish with most wins? 3
1-2)— 0
h/3 *
~.
WI
a3~ we

W3 ol
Remaining number 4-5 00 team Number of wins team i can
of games between game nodes have to not beat team 3

the 2 teams
nodes

 Team 3 cannot finish first & min cut of size < “all blue edges”

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

Reason for Elimination

UNI

Certificate of elimination:

91_2? C X, w(R) := Zwi, r(R) = z T,

IER I,jJER

w w
#wins of H#remaining games
nodesin R among nodesin R

Team x € X is eliminated by R if
w(R) + r(R)
R|

.

> Wy T 1.

Algorithm Theory, WS 2019/20 Fabian Kuhn

26

FREIBURG

Reason for Elimination

UNI

FREIBURG

Theorem: Team x is eliminated if and only if there exists a subset
R € X of the teams X such that x is eliminated by R.

Proof Idea:
 Minimum cut gives a certificate...

* |f xis eliminated, max flow solution does not saturate all
outgoing edges of the source.

 Team nodes of unsaturated source-game edges are saturated

e Source side of min cut contains all teams of saturated team-dest.

edges of unsaturated source-game edges

e Set of team nodes in source-side of min cut give a certificate R

Algorithm Theory, WS 2019/20 Fabian Kuhn 27

Circulations with Demands

UNI
f

FREIBURG

Given: Directed network with positive edge capacities

Sources & Sinks: Instead of one source and one destination, several
sources that generate flow and several sinks that absorb flow.

Supply & Demand: sources have supply values, sinks demand values

Goal: Compute a flow such that source supplies and sink demands
are exactly satisfied

* The circulation problem is a feasibility rather than a maximization
problem B

Algorithm Theory, WS 2019/20 Fabian Kuhn 28

Circulations with Demands: Formally

Given: Directed network G = (V/, E) with
* Edge capacitiesc, > Oforalle € E

* Nodedemandsd, € Rforallv eV
— d,, > 0: node needs flow and therefore is a sink

— C}_V_< 0: node has a supply of —d,, and is therefore a source

— d, = 0: node is neither a source nor a sink

Flow: Function f: E — R, satisfying
* Capacity Conditions:Ve € E: 0 < f(e) <c,

 Demand Conditions: Yv € V: fi'(v) — foU(v) =d,

p=—

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Example

UNI
f

FREIBURG

Algorithm Theory, WS 2019/20

Fabian Kuhn

30

Condition on Demands

UNI

Claim: If there exists a feasible circulation with demands d,, for
v €V, then Ho
e

Zdv=o. |
™

rat
vevV ({V = fcw- ,ecw

Proof:

. " sub
© Tody = 5, (@) - W) = Sf e 2fw =0
v ?
* f(e) of each edge e appears twice in the above sum with
different signs = overall sum is 0

Total supply = total demand:

Define D := z d, = z —d,,

v:d,>0 v:d,,<0

Algorithm Theory, WS 2019/20 Fabian Kuhn 31

FREIBURG

Reduction to Maximum Flow

|
FRE:BURG

UNI

e Add “super-source” s* and “super-sink” t* to network

t* siphons
flow out
of sinks

s” supplies
sources
with flow

Algorithm Theory, WS 2019/20 Fabian Kuhn 32

Example

UNI

FREIBURG

Algorithm Theory, WS 2019/20

Fabian Kuhn

S

UNI

Formally...

FREIBURG

Reduction: Get graph G’ from graph as follows
e Nodesetof G'isV U {s*, t*}

 Edge setis E and edges
— (s%,v) forall v with d,, < 0, capacity of edge is —d,,
— (v, t") forall v with d,, > 0, capacity of edge is d,,

Observations:

 Capacity of min s*-t* cut is at most D (e.g., the cut (s*,V U {t*})

* A feasible circulation on G can be turned into a feasible flow of
value D of G’ by saturating all (s*,v) and (v, t*) edges.

* Any flow of G’ of value D induces a feasible circulation on G

— (s*,v) and (v, t*) edges are saturated
— By removing these edges, we get exactly the demand constraints

Algorithm Theory, WS 2019/20 Fabian Kuhn 34

Circulation with Demands

UNI
FREIBURG

Theorem: There is a feasible circulation with demands d,,, v € VV

on graph G if and only if there is a flow of value D on G'.
= — =

* If all capacities and demands are integers, there is an integer
circulation

The max flow min cut theorem also implies the following:

Theorem: The graph G has a feasible circulation with demands

d,, v € V if and only if for all cuts (4, B), A op23 B
-1
z d, < c(A,B).

VEB T

Algorithm Theory, WS 2019/20 Fabian Kuhn 35

