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Circulations with Demands

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 for all 𝑒 ∈ 𝐸

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.
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Reduction to Maximum Flow

• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network
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Circulation: Demands and Lower Bounds

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.
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Solution Idea

• Define initial circulation 𝑓0 𝑒 = ℓ𝑒
Satisfies capacity constraints: ∀𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓0 𝑒 ≤ 𝑐𝑒

• Define

𝐿𝑣 ≔ 𝑓0
in 𝑣 − 𝑓0

out 𝑣 = ෍

𝑒 into 𝑣

ℓ𝑒 − ෍

𝑒 out of 𝑣

ℓ𝑒

• If 𝐿𝑣 = 𝑑𝑣, demand condition is satisfied at 𝑣 by 𝑓0, otherwise, 
we need to superimpose another circulation 𝑓1 such that

𝑑𝑣
′ ≔ 𝑓1

in 𝑣 − 𝑓1
out 𝑣 = 𝑑𝑣 − 𝐿𝑣

• Remaining capacity of edge 𝑒: 𝑐𝑒
′ ≔ 𝑐𝑒 − ℓ𝑒

• We get a circulation problem with new demands 𝑑𝑣
′ , new 

capacities 𝑐𝑒
′ , and no lower bounds
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Eliminating a Lower Bound: Example

-3 2

-3

4

3 3

2

2 2

Lower bound of 2

-5 2

-1

4

1 3

2

2 2



Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Reduce to Problem Without Lower Bounds

Graph 𝑮 = (𝑽, 𝑬):

• Capacity: For each edge 𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand: For each node 𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Model lower bounds with supplies & demands:

Create Network 𝑮′ (without lower bounds):

• For each edge 𝑒 ∈ 𝐸: 𝑐𝑒
′ = 𝑐𝑒 − ℓ𝑒

• For each node 𝑣 ∈ 𝑉: 𝑑𝑣
′ = 𝑑𝑣 − 𝐿𝑣

𝑢 𝑣
ℓ𝒆 ≤ 𝒄𝒆

Flow: ℓ𝒆
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Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in 𝐺 (with lower bounds) if 
and only if there is feasible circulation in 𝐺′ (without lower bounds).

• Given circulation 𝑓′ in 𝐺′, 𝑓 𝑒 = 𝑓′ 𝑒 + ℓ𝑒 is circulation in 𝐺
– The capacity constraints are satisfied because 𝑓′ 𝑒 ≤ 𝑐𝑒 − ℓ𝑒
– Demand conditions:

𝑓in 𝑣 − 𝑓out 𝑣 = ෍

𝑒 into 𝑣

ℓ𝑒 + 𝑓′ 𝑒 − ෍

𝑒 out of 𝑣

ℓ𝑒 + 𝑓′ 𝑒

= 𝐿𝑣 + 𝑑𝑣 − 𝐿𝑣 = 𝑑𝑣

• Given circulation 𝑓 in 𝐺, 𝑓′(𝑒) = 𝑓 𝑒 − ℓ𝑒 is circulation in 𝐺′
– The capacity constraints are satisfied because ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒
– Demand conditions:

𝑓′in 𝑣 − 𝑓′out 𝑣 = ෍

𝑒 into 𝑣

𝑓 𝑒 − ℓ𝑒 − ෍

𝑒 out of 𝑣

𝑓 𝑒 − ℓ𝑒

= 𝑑𝑣 − 𝐿𝑣
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Integrality

Theorem: Consider a circulation problem with integral capacities, 
flow lower bounds, and node demands. If the problem is feasible, 
then it also has an integral solution.

Proof:

• Graph 𝐺′ has only integral capacities and demands

• Thus, the flow network used in the reduction to solve 
circulation with demands and no lower bounds has only 
integral capacities

• The theorem now follows because a max flow problem with 
integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied, 
we get an integral feasible circulation solution.
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Matrix Rounding

• Given: 𝑝 × 𝑞 matrix 𝐷 = {𝑑𝑖,𝑗} of real numbers

• row 𝒊 sum: 𝑎𝑖 = σ𝑗 𝑑𝑖,𝑗,     column 𝒋 sum: 𝑏𝑗 = σ𝑖 𝑑𝑖,𝑗

• Goal: Round each 𝑑𝑖,𝑗, as well as 𝑎𝑖 and 𝑏𝑗 up or down to the 

next integer so that the sum of rounded elements in each row 
(column) equals the rounded row (column) sum

• Original application: publishing census data

Example:

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

3 7 7 17

10 2 1 13

3 1 7 11

16 10 15

original data possible rounding
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Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding. 

Remark: Just rounding to the nearest integer doesn’t work

0.35 0.35 0.35 1.05

0.55 0.55 0.55 1.65

0.90 0.90 0.90

0 0 0 0

1 1 1 3

1 1 1

0 0 1 1

1 1 0 2

1 1 1

original data

feasible roundingrounding to nearest integer
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Reduction to Circulation

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

𝒓𝟏

𝒓𝟐

rows:

𝒓𝟑

𝒄𝟏

𝒄𝟐

𝒄𝟑

columns:

3,4

2,3𝑠 𝑡12,13 10,11

∞

Matrix elements and row/column sums
give a feasible circulation that satisfies
all lower bound, capacity, and demand
constraints

all demands 𝑑𝑣 = 0
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Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

• The matrix entries 𝑑𝑖,𝑗 and the row and column sums 𝑎𝑖 and 𝑏𝑗
give a feasible circulation for the constructed network

• Every feasible circulation gives matrix entries with corresponding 
row and column sums (follows from demand constraints)

• Because all demands, capacities, and flow lower bounds are 
integral, there is an integral solution to the circulation problem

→ gives a feasible rounding!
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Matching
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Gifts-Children Graph

• Which child likes which gift can be represented by a graph
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Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size Τ𝑛 2 (every node is matched)
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Bipartite Graph

Definition: A graph 𝐺 = 𝑉, 𝐸 is called bipartite iff its node set 
can be partitioned into two parts 𝑉 = 𝑉1 ∪ 𝑉2 such that for each 
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉1 = 1.

• Thus, edges are only between the two parts

⋅

𝑉1 𝑉2
𝐸
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Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching
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Reducing to Maximum Flow

• Like edge-disjoint paths…

all capacities are 𝟏

𝒔 𝒕
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Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the 
constructed graph induces a maximum bipartite matching of 𝐺.

Proof:

1. An integer flow 𝑓 of value |𝑓| induces a matching of size |𝑓|
– Left nodes (gifts) have incoming capacity 1

– Right nodes (children) have outgoing capacity 1

– Left and right nodes are incident to ≤ 1 edge 𝑒 of 𝐺 with 𝑓 𝑒 = 1

2. A matching of size 𝑘 implies a flow 𝑓 of value 𝑓 = 𝑘
– For each edge {𝑢, 𝑣} of the matching:

𝑓 𝑠, 𝑢 = 𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑡 = 1

– All other flow values are 0
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Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be 
computed in time 𝑂(𝑚 ⋅ 𝑛). 
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Perfect Matching?

• There can only be a perfect matching if both sides of the 
partition have size Τ𝑛 2.

• There is no perfect matching, iff there is an 𝑠-𝑡 cut of
size < Τ𝑛 2 in the flow network.

ൗ𝑛 2 ൗ𝑛 2

𝑡𝑠
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𝑠-𝑡 Cuts

Partition (𝐴, 𝐵) of node set such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• If 𝑣𝑖 ∈ 𝐴: edge (𝑣𝑖 , 𝑡) is in cut (𝐴, 𝐵)

• If 𝑢𝑖 ∈ 𝐵: edge (𝑠, 𝑢𝑖) is in cut (𝐴, 𝐵)

• Otherwise (if 𝑢𝑖 ∈ 𝐴, 𝑣𝑖 ∈ 𝐵), all edges from 𝑢𝑖 to some 𝑣𝑗 ∈

𝐵 are in cut (𝐴, 𝐵)

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑈 𝑉

𝑡𝑠
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

1. Assume there is 𝑈′ for which 𝑁 𝑈′ < |U′|:

𝑡𝑠

𝑼′ 𝑵(𝑼′)
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

2. Assume that there is a cut (𝐴, 𝐵) of capacity < Τ𝑛 2

𝑡𝑠

𝑼′

𝒙

𝒚
𝒛

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙
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Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof:  No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < 𝑛

2. Assume that there is a cut (𝐴, 𝐵) of capacity < 𝑛

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙
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What About General Graphs

• Can we efficiently compute a maximum matching if 𝐺 is not 
bipartite?

• How good is a maximal matching?
– A matching that cannot be extended…

• Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

• A vertex cover covers all edges by incident nodes
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Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof: 

• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆

• Needs to be a different node for different edges from 𝑀
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Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: If 𝑀 is maximal and 𝑆 is minimum, 𝑆 ≤ 2 𝑀

Proof: 

• 𝑀 is maximal: for every edge 𝑢, 𝑣 ∈ 𝐸, either 𝑢 or 𝑣 (or both) 
are matched 

• Every edge 𝑒 ∈ 𝐸 is “covered” by at least one matching edge

• Thus, the set of the nodes of all matching edges gives a vertex 
cover 𝑆 of size 𝑆 = 2|𝑀|.
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Maximal Matching Approximation

Theorem: For any maximal matching 𝑀 and any maximum matching 
𝑀∗, it holds that

𝑀 ≥
𝑀∗

2
.

Proof:

Theorem: The set of all matched nodes of a maximal matching 𝑀 is 
a vertex cover of size at most twice the size of a min. vertex cover.
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Augmenting Paths

Consider a matching 𝑀 of a graph 𝐺 = (𝑉, 𝐸):

• A node 𝑣 ∈ 𝑉 is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free 
node and visits edges in 𝐸 ∖ 𝑀 and edges in 𝑀 alternatingly.

• Matching 𝑀 can be improved using an augmenting path by 
switching the role of each edge along the path

free nodes

alternating path
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Augmenting Paths

Theorem: A matching 𝑀 of 𝐺 = (𝑉, 𝐸) is maximum if and only if 
there is no augmenting path.

Proof:

• Consider non-max. matching 𝑀 and max. matching 𝑀∗ and define

𝐹 ≔ 𝑀 ∖𝑀∗, 𝐹∗ ≔ 𝑀∗ ∖ 𝑀

• Note that 𝐹 ∩ 𝐹∗ = ∅ and 𝐹 < |𝐹∗|

• Each node 𝑣 ∈ 𝑉 is incident to at most one edge in both 𝐹 and 𝐹∗

• 𝐹 ∪ 𝐹∗ induces even cycles and paths
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Finding Augmenting Paths

free nodes

augmenting path

odd cycle
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Blossoms

• If we find an odd cycle…

free node 𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

blossom

𝑏

𝑐

𝑑

𝑎

𝑒
stem

𝑓

𝑢

𝑣′𝑏

𝑐

𝑑

𝑎

𝑒

contracted blossom

contract 
blossom

Graph 𝑮

Graph 𝑮′

root

Matching 𝑴

𝒆 𝒆′

Matching 𝑴′ = 𝑴 ∖ 𝒆, 𝒆′

is a matching of 𝑮′.
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Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′
has an augmenting path w.r.t. matching 𝑀′

Also: The matching 𝑀 can be computed efficiently from 𝑀′.

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

𝑎

𝑏

𝑓′ 𝑓

𝑢

𝑎

𝑏

𝑓′

𝑣′

Note: If stem has length 0,
root 𝑣 of blossom is free
and thus also the node 𝑣′

is free in 𝐺′.
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Edmond’s Blossom Algorithm

Algorithm Sketch:

1. Build a tree for each free node

2. Starting from an explored node 𝑢 at even distance from a free 
node 𝑓 in the tree of 𝑓, explore some unexplored edge {𝑢, 𝑣}:

1. If 𝑣 is an unexplored node, 𝑣 is matched to some neighbor 𝑤:
add 𝑤 to the tree (𝑤 is now explored)

2. If 𝑣 is explored and in the same tree:
at odd distance from root → ignore and move on
at even distance from root → blossom found

3. If 𝑣 is explored and in another tree
at odd distance from root → ignore and move on
at even distance from root → augmenting path found
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Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time 𝑂 𝑚𝑛2 .


