
Chapter 6

Graph Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Circulations with Demands

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 for all 𝑒 ∈ 𝐸

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Reduction to Maximum Flow

• Add “super-source” 𝑠∗ and “super-sink” 𝑡∗ to network

𝑺 𝑻
-3

-1

-6
3

2

1

4

0 0

0

0

0

0

𝒔∗ 𝒕∗
𝟑
𝟏

𝟔

𝟏

𝟒

𝟐
𝟑

𝑠∗ supplies
sources

with flow

𝑡∗ siphons
flow out
of sinks

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Circulation: Demands and Lower Bounds

Given: Directed network 𝐺 = 𝑉, 𝐸 with

• Edge capacities 𝑐𝑒 > 0 and lower bounds 𝟎 ≤ ℓ𝒆 ≤ 𝒄𝒆 for 𝒆 ∈ 𝑬

• Node demands 𝑑𝑣 ∈ ℝ for all 𝑣 ∈ 𝑉
– 𝑑𝑣 > 0: node needs flow and therefore is a sink

– 𝑑𝑣 < 0: node has a supply of −𝑑𝑣 and is therefore a source

– 𝑑𝑣 = 0: node is neither a source nor a sink

Flow: Function 𝑓: 𝐸 → ℝ≥0 satisfying

• Capacity Conditions: ∀𝑒 ∈ 𝐸: ℓ𝒆 ≤ 𝒇 𝒆 ≤ 𝒄𝒆

• Demand Conditions: ∀𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Objective: Does a flow 𝑓 satisfying all conditions exist?
If yes, find such a flow 𝑓.

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

Solution Idea

• Define initial circulation 𝑓0 𝑒 = ℓ𝑒
Satisfies capacity constraints: ∀𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓0 𝑒 ≤ 𝑐𝑒

• Define

𝐿𝑣 ≔ 𝑓0
in 𝑣 − 𝑓0

out 𝑣 = ෍

𝑒 into 𝑣

ℓ𝑒 − ෍

𝑒 out of 𝑣

ℓ𝑒

• If 𝐿𝑣 = 𝑑𝑣, demand condition is satisfied at 𝑣 by 𝑓0, otherwise,
we need to superimpose another circulation 𝑓1 such that

𝑑𝑣
′ ≔ 𝑓1

in 𝑣 − 𝑓1
out 𝑣 = 𝑑𝑣 − 𝐿𝑣

• Remaining capacity of edge 𝑒: 𝑐𝑒
′ ≔ 𝑐𝑒 − ℓ𝑒

• We get a circulation problem with new demands 𝑑𝑣
′ , new

capacities 𝑐𝑒
′ , and no lower bounds

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Eliminating a Lower Bound: Example

-3 2

-3

4

3 3

2

2 2

Lower bound of 2

-5 2

-1

4

1 3

2

2 2

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Reduce to Problem Without Lower Bounds

Graph 𝑮 = (𝑽, 𝑬):

• Capacity: For each edge 𝑒 ∈ 𝐸: ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒

• Demand: For each node 𝑣 ∈ 𝑉: 𝑓in 𝑣 − 𝑓out 𝑣 = 𝑑𝑣

Model lower bounds with supplies & demands:

Create Network 𝑮′ (without lower bounds):

• For each edge 𝑒 ∈ 𝐸: 𝑐𝑒
′ = 𝑐𝑒 − ℓ𝑒

• For each node 𝑣 ∈ 𝑉: 𝑑𝑣
′ = 𝑑𝑣 − 𝐿𝑣

𝑢 𝑣
ℓ𝒆 ≤ 𝒄𝒆

Flow: ℓ𝒆

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in 𝐺 (with lower bounds) if
and only if there is feasible circulation in 𝐺′ (without lower bounds).

• Given circulation 𝑓′ in 𝐺′, 𝑓 𝑒 = 𝑓′ 𝑒 + ℓ𝑒 is circulation in 𝐺
– The capacity constraints are satisfied because 𝑓′ 𝑒 ≤ 𝑐𝑒 − ℓ𝑒
– Demand conditions:

𝑓in 𝑣 − 𝑓out 𝑣 = ෍

𝑒 into 𝑣

ℓ𝑒 + 𝑓′ 𝑒 − ෍

𝑒 out of 𝑣

ℓ𝑒 + 𝑓′ 𝑒

= 𝐿𝑣 + 𝑑𝑣 − 𝐿𝑣 = 𝑑𝑣

• Given circulation 𝑓 in 𝐺, 𝑓′(𝑒) = 𝑓 𝑒 − ℓ𝑒 is circulation in 𝐺′
– The capacity constraints are satisfied because ℓ𝑒 ≤ 𝑓 𝑒 ≤ 𝑐𝑒
– Demand conditions:

𝑓′in 𝑣 − 𝑓′out 𝑣 = ෍

𝑒 into 𝑣

𝑓 𝑒 − ℓ𝑒 − ෍

𝑒 out of 𝑣

𝑓 𝑒 − ℓ𝑒

= 𝑑𝑣 − 𝐿𝑣

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Integrality

Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:

• Graph 𝐺′ has only integral capacities and demands

• Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

• The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

• It also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Matrix Rounding

• Given: 𝑝 × 𝑞 matrix 𝐷 = {𝑑𝑖,𝑗} of real numbers

• row 𝒊 sum: 𝑎𝑖 = σ𝑗 𝑑𝑖,𝑗, column 𝒋 sum: 𝑏𝑗 = σ𝑖 𝑑𝑖,𝑗

• Goal: Round each 𝑑𝑖,𝑗, as well as 𝑎𝑖 and 𝑏𝑗 up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

• Original application: publishing census data

Example:

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

3 7 7 17

10 2 1 13

3 1 7 11

16 10 15

original data possible rounding

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

0.35 0.35 0.35 1.05

0.55 0.55 0.55 1.65

0.90 0.90 0.90

0 0 0 0

1 1 1 3

1 1 1

0 0 1 1

1 1 0 2

1 1 1

original data

feasible roundingrounding to nearest integer

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Reduction to Circulation

3.14 6.80 7.30 17.24

9.60 2.40 0.70 12.70

3.60 1.20 6.50 11.30

16.34 10.40 14.50

𝒓𝟏

𝒓𝟐

rows:

𝒓𝟑

𝒄𝟏

𝒄𝟐

𝒄𝟑

columns:

3,4

2,3𝑠 𝑡12,13 10,11

∞

Matrix elements and row/column sums
give a feasible circulation that satisfies
all lower bound, capacity, and demand
constraints

all demands 𝑑𝑣 = 0

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

• The matrix entries 𝑑𝑖,𝑗 and the row and column sums 𝑎𝑖 and 𝑏𝑗
give a feasible circulation for the constructed network

• Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

• Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

→ gives a feasible rounding!

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

Matching

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

Gifts-Children Graph

• Which child likes which gift can be represented by a graph

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size Τ𝑛 2 (every node is matched)

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

Bipartite Graph

Definition: A graph 𝐺 = 𝑉, 𝐸 is called bipartite iff its node set
can be partitioned into two parts 𝑉 = 𝑉1 ∪ 𝑉2 such that for each
edge u, v ∈ 𝐸,

𝑢, 𝑣 ∩ 𝑉1 = 1.

• Thus, edges are only between the two parts

⋅

𝑉1 𝑉2
𝐸

Algorithm Theory, WS 2019/20 Fabian Kuhn 18

Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

Reducing to Maximum Flow

• Like edge-disjoint paths…

all capacities are 𝟏

𝒔 𝒕

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of 𝐺.

Proof:

1. An integer flow 𝑓 of value |𝑓| induces a matching of size |𝑓|
– Left nodes (gifts) have incoming capacity 1

– Right nodes (children) have outgoing capacity 1

– Left and right nodes are incident to ≤ 1 edge 𝑒 of 𝐺 with 𝑓 𝑒 = 1

2. A matching of size 𝑘 implies a flow 𝑓 of value 𝑓 = 𝑘
– For each edge {𝑢, 𝑣} of the matching:

𝑓 𝑠, 𝑢 = 𝑓 𝑢, 𝑣 = 𝑓 𝑣, 𝑡 = 1

– All other flow values are 0

Algorithm Theory, WS 2019/20 Fabian Kuhn 21

Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be
computed in time 𝑂(𝑚 ⋅ 𝑛).

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

Perfect Matching?

• There can only be a perfect matching if both sides of the
partition have size Τ𝑛 2.

• There is no perfect matching, iff there is an 𝑠-𝑡 cut of
size < Τ𝑛 2 in the flow network.

ൗ𝑛 2 ൗ𝑛 2

𝑡𝑠

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

𝑠-𝑡 Cuts

Partition (𝐴, 𝐵) of node set such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝐵

• If 𝑣𝑖 ∈ 𝐴: edge (𝑣𝑖 , 𝑡) is in cut (𝐴, 𝐵)

• If 𝑢𝑖 ∈ 𝐵: edge (𝑠, 𝑢𝑖) is in cut (𝐴, 𝐵)

• Otherwise (if 𝑢𝑖 ∈ 𝐴, 𝑣𝑖 ∈ 𝐵), all edges from 𝑢𝑖 to some 𝑣𝑗 ∈

𝐵 are in cut (𝐴, 𝐵)

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑈 𝑉

𝑡𝑠

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

1. Assume there is 𝑈′ for which 𝑁 𝑈′ < |U′|:

𝑡𝑠

𝑼′ 𝑵(𝑼′)

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < Τ𝑛 2

2. Assume that there is a cut (𝐴, 𝐵) of capacity < Τ𝑛 2

𝑡𝑠

𝑼′

𝒙

𝒚
𝒛

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙

Algorithm Theory, WS 2019/20 Fabian Kuhn 26

Hall’s Marriage Theorem

Theorem: A bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸) for which 𝑈 = |𝑉|
has a perfect matching if and only if

∀𝑼′ ⊆ 𝑼: 𝑵 𝑼′ ≥ 𝑼′ ,
where 𝑁 𝑈′ ⊆ 𝑉 is the set of neighbors of nodes in 𝑈′.

Proof: No perfect matching ⟺ some 𝑠-𝑡 cut has capacity < 𝑛

2. Assume that there is a cut (𝐴, 𝐵) of capacity < 𝑛

𝒙 + 𝒚 + 𝒛 <
𝒏

𝟐

|𝑵 𝑼′ | ≤ 𝒚 + 𝒛

𝑼′ =
𝒏

𝟐
− 𝒙

Algorithm Theory, WS 2019/20 Fabian Kuhn 27

What About General Graphs

• Can we efficiently compute a maximum matching if 𝐺 is not
bipartite?

• How good is a maximal matching?
– A matching that cannot be extended…

• Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

• A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2019/20 Fabian Kuhn 28

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof:

• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆

• Needs to be a different node for different edges from 𝑀

Algorithm Theory, WS 2019/20 Fabian Kuhn 29

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: If 𝑀 is maximal and 𝑆 is minimum, 𝑆 ≤ 2 𝑀

Proof:

• 𝑀 is maximal: for every edge 𝑢, 𝑣 ∈ 𝐸, either 𝑢 or 𝑣 (or both)
are matched

• Every edge 𝑒 ∈ 𝐸 is “covered” by at least one matching edge

• Thus, the set of the nodes of all matching edges gives a vertex
cover 𝑆 of size 𝑆 = 2|𝑀|.

Algorithm Theory, WS 2019/20 Fabian Kuhn 30

Maximal Matching Approximation

Theorem: For any maximal matching 𝑀 and any maximum matching
𝑀∗, it holds that

𝑀 ≥
𝑀∗

2
.

Proof:

Theorem: The set of all matched nodes of a maximal matching 𝑀 is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2019/20 Fabian Kuhn 31

Augmenting Paths

Consider a matching 𝑀 of a graph 𝐺 = (𝑉, 𝐸):

• A node 𝑣 ∈ 𝑉 is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in 𝐸 ∖ 𝑀 and edges in 𝑀 alternatingly.

• Matching 𝑀 can be improved using an augmenting path by
switching the role of each edge along the path

free nodes

alternating path

Algorithm Theory, WS 2019/20 Fabian Kuhn 32

Augmenting Paths

Theorem: A matching 𝑀 of 𝐺 = (𝑉, 𝐸) is maximum if and only if
there is no augmenting path.

Proof:

• Consider non-max. matching 𝑀 and max. matching 𝑀∗ and define

𝐹 ≔ 𝑀 ∖𝑀∗, 𝐹∗ ≔ 𝑀∗ ∖ 𝑀

• Note that 𝐹 ∩ 𝐹∗ = ∅ and 𝐹 < |𝐹∗|

• Each node 𝑣 ∈ 𝑉 is incident to at most one edge in both 𝐹 and 𝐹∗

• 𝐹 ∪ 𝐹∗ induces even cycles and paths

Algorithm Theory, WS 2019/20 Fabian Kuhn 33

Finding Augmenting Paths

free nodes

augmenting path

odd cycle

Algorithm Theory, WS 2019/20 Fabian Kuhn 34

Blossoms

• If we find an odd cycle…

free node 𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

blossom

𝑏

𝑐

𝑑

𝑎

𝑒
stem

𝑓

𝑢

𝑣′𝑏

𝑐

𝑑

𝑎

𝑒

contracted blossom

contract
blossom

Graph 𝑮

Graph 𝑮′

root

Matching 𝑴

𝒆 𝒆′

Matching 𝑴′ = 𝑴 ∖ 𝒆, 𝒆′

is a matching of 𝑮′.

Algorithm Theory, WS 2019/20 Fabian Kuhn 35

Lemma: Graph 𝐺 has an augmenting path w.r.t. matching 𝑀 iff 𝐺′
has an augmenting path w.r.t. matching 𝑀′

Also: The matching 𝑀 can be computed efficiently from 𝑀′.

Contracting Blossoms

𝑓

𝑢

𝑣

𝑤

𝑥

𝑧

𝑦

𝑎

𝑏

𝑓′ 𝑓

𝑢

𝑎

𝑏

𝑓′

𝑣′

Note: If stem has length 0,
root 𝑣 of blossom is free
and thus also the node 𝑣′

is free in 𝐺′.

Algorithm Theory, WS 2019/20 Fabian Kuhn 36

Edmond’s Blossom Algorithm

Algorithm Sketch:

1. Build a tree for each free node

2. Starting from an explored node 𝑢 at even distance from a free
node 𝑓 in the tree of 𝑓, explore some unexplored edge {𝑢, 𝑣}:

1. If 𝑣 is an unexplored node, 𝑣 is matched to some neighbor 𝑤:
add 𝑤 to the tree (𝑤 is now explored)

2. If 𝑣 is explored and in the same tree:
at odd distance from root → ignore and move on
at even distance from root → blossom found

3. If 𝑣 is explored and in another tree
at odd distance from root → ignore and move on
at even distance from root → augmenting path found

Algorithm Theory, WS 2019/20 Fabian Kuhn 37

Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time 𝑂 𝑚𝑛2 .

