Chapter 6
Graph Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG

Circulations with Demands

UNI

FREIBURG

Given: Directed network G = (V/, E) with
* Edge capacitiesc, > Oforalle € E

* Nodedemandsd, € Rforallv eV

— d, > 0: node needs flow and therefore is a sink
— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E — R, satisfying
* Capacity Conditions:Ve € E: 0 < f(e) <c,
 Demand Conditions: Yv € V: fi'(v) — foU(v) =d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2019/20 Fabian Kuhn

Reduction to Maximum Flow

UNI
f

FREIBURG

e Add “super-source” s* and “super-sink” t* to network

t* siphons
flow out
of sinks

s” supplies
sources
with flow

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Circulation: Demands and Lower Bounds _

UNI
FREIBURG

Given: Directed network G = (V/, E) with
* Edge capacities ¢, > 0 and lower bounds 0 < ¢, < c,fore € E

* Nodedemandsd, € Rforallv eV

— d, > 0: node needs flow and therefore is a sink
— d, < 0: node has a supply of —d,, and is therefore a source
— d, = 0: node is neither a source nor a sink

Flow: Function f: E — R, satisfying
* Capacity Conditions:Ve € E: £, < f(e) < c,
 Demand Conditions:Yv € V: f(v) — fo"(v) = d,

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Solution Idea

 Define initial circulation fy(e) = £,
Satisfies capacity constraints: Ve € E: ¢, < fy(e) < c,

e Define

Ly =@ = @) = Y le= Y L

e intov e out of v

 If L, =d,, demand condition is satisfied at v by f;, otherwise,
we need to superimpose another circulation f; such that

dy = fi*(v) = [P W) = dy — Ly
* Remaining capacity of edge e: ¢, :=c, — ¥,

« We get a circulation problem with new demands d;,, new
capacities c,, and no lower bounds

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

UNI
f

FREIBURG

UNI

Eliminating a Lower Bound: Example

FREIBURG

Lower bound of 2

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Reduce to Problem Without Lower Bounds _

UNI

FREIBURG

Graph G = (V,E):
* Capacity: Foreachedgee € E: ¥, < f(e) < c,
 Demand: For each node v € V: fI%(v) — fOU(v) = d,,

Model lower bounds with supplies & demands:

W—=e=fe)

Flow: ¢,

Create Network G’ (without lower bounds):
 Foreachedgee€E:c, =c, — ¥,
 ForeachnodeveV:d, =d,— L,

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

EIBURG

Circulation: Demands and Lower Bounds _:

o5&

Theorem: There is a feasible circulation in G (with lower bounds) if
and only if there is feasible circulation in G’ (without lower bounds).

 Given circulation f'in G', f(e) = f'(e) + £, is circulation in G
— The capacity constraints are satisfied because f'(e) < ¢, — ¥,
— Demand conditions:

Frm) =) =) (Lt f1@)=) (@)

eintov e out of v

=L,+(d, —L,) =d,
 Given circulation fin G, f'(e) = f(e) — £, is circulation in G’
— The capacity constraints are satisfied because £, < f(e) < c,
— Demand conditions:

f’in(v) _flout(v) — z (f (e) — {e) — z (f (e) — fe)

e intov e out of v
— dv - Lv

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Integrality

UNI
FREIBURG

Theorem: Consider a circulation problem with integral capacities,
flow lower bounds, and node demands. If the problem is feasible,
then it also has an integral solution.

Proof:

* Graph G' has only integral capacities and demands

* Thus, the flow network used in the reduction to solve
circulation with demands and no lower bounds has only
integral capacities

* The theorem now follows because a max flow problem with
integral capacities also has an optimal integral solution

* |t also follows that with the max flow algorithms we studied,
we get an integral feasible circulation solution.

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

UNI

Matrix Rounding

FREIBURG

* Given: p X g matrix D = {d; ;} of real numbers
* rowisum:q; =) ;d;;, columnjsum:b; =),;d;;

* Goal: Round each d; ;, as well as a; and b; up or down to the

next integer so that the sum of rounded elements in each row
(column) equals the rounded row (column) sum

* Original application: publishing census data

Example:

3.14 | 6.80 | 7.30

9.60 | 2.40 | 0.70

3.60 | 1.20

original data possible rounding

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Matrix Rounding

UNI
f

FREIBURG

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn’t work

original data

rounding to nearest integer feasible rounding

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Reduction to Circulation

UNI
f

FREIBURG

Matrix elements and row/column sums
give a feasible circulation that satisfies

all lower bound, capacity, and demand

constraints

columns:

all demands d,, = 0

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

UNI

Matrix Rounding

FREIBURG

Theorem: For any matrix, there exists a feasible rounding.

Proof:

* The matrix entries d; ; and the row and column sums a; and b;
give a feasible circulation for the constructed network

* Every feasible circulation gives matrix entries with corresponding
row and column sums (follows from demand constraints)

* Because all demands, capacities, and flow lower bounds are
integral, there is an integral solution to the circulation problem

- gives a feasible rounding!

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

|
- [gt:[EP-F]
"ZD

Matching

14

Fabian Kuhn

Algorithm Theory, WS 2019/20

Gifts-Children Graph

UNI

FREIBURG

* Which child likes which gift can be represented by a graph

il

Algorithm Theory, WS 2019/20 Fabian Kuhn

Matching

|
FRE:BURG

UNI

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size "/, (every node is matched)

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

UNI
f

FREIBURG

Bipartite Graph

Definition: A graph G = (V/, E) is called bipartite iff its node set
can be partitioned into two parts IV = I/; U V, such that for each
edge {u,v} € E,

Hu,v}n V| =1.

* Thus, edges are only between the two parts

O

E
Vi V

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

|
IBURG

Santa’s Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift
iff there is a matching
of size #children

@ [')K H—) L

Clearly, every matching
is at most as big

If #children = #gifts,
there is a solution iff
there is a perfect matching

N

'

e
@

g A

=
o

Algorithm Theory, WS 2019/20 Fabian Kuhn

Reducing to Maximum Flow

UNI

FREIBURG

* Like edge-disjoint paths...

all capacities are 1

Algorithm Theory, WS 2019/20 Fabian Kuhn

19

UNI

Reducing to Maximum Flow

FREIBURG

Theorem: Every integer solution to the max flow problem on the
constructed graph induces a maximum bipartite matching of G.

Proof:

1. Aninteger flow f of value |f| induces a matching of size |f|
— Left nodes (gifts) have incoming capacity 1
— Right nodes (children) have outgoing capacity 1
— Left and right nodes are incident to < 1 edge e of G with f(e) =1

2. A matching of size k implies a flow f of value |f| = k
— For each edge {u, v} of the matching:

f((sw) = f(wv) = f((w,1) =1

— All other flow values are 0

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

Running Time of Max. Bipartite Matching

UNI
f

FREIBURG

Theorem: A maximum matching of a bipartite graph can be

computed in time O(m - n).

Algorithm Theory, WS 2019/20

Fabian Kuhn

21

Perfect Matching?

UNI

FREIBURG

 There can only be a perfect matching if both sides of the
partition have size /,.

* There is no perfect matching, iff there is an s-t cut of
size < "/, in the flow network.

Algorithm Theory, WS 2019/20 Fabian Kuhn

22

s-t Cuts

|
FRE:BURG

UNI

Partition (4, B) of node set suchthats € Aandt € B
 Ifv; € A: edge (v;,t)isincut (4,B)
 Ifu; € B:edge (s,u;)isincut (4, B)

* Otherwise (if u; € A, v; € B), all edges from u; to some v; €
B areincut (4,B)

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Hall’'s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph G = (U U V, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|IN(U")| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
1. Assume there is U’ for which [N(U")| < |U’|:

U’ N(U’)

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

UNI

Hall’'s Marriage Theorem

FREIBURG

Theorem: A bipartite graph G = (U U V, E) for which |U| = |V|
has a perfect matching if and only if

vU' c U:|IN(U")| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.

Proof: No perfect matching & some s-t cut has capacity < n/2
2. Assume that there is a cut (4, B) of capacity < n/2

, n
NU)<y+ @ = © y
Z
=7 -~ -~
n
9 O x + y+z< —O- G
- 20~

S0 -

Algorithm Theory, WS 2019/20 ‘ Fabian Kuhn ‘ 25

Hall’'s Marriage Theorem

UNI
FREIBURG

Theorem: A bipartite graph G = (U U V, E) for which |U| = |V|
has a perfect matching if and only if
vU' € U:INWU")| = |U'|,
where N(U") € V is the set of neighbors of nodes in U'.
Proof: No perfect matching & some s-t cut has capacity < n

2. Assume that thereis a cut (4, B) of capacity < n
') =5
=——X
2

INU)|<y+z
n

X+y+z<
yTzsyg

Algorithm Theory, WS 2019/20 Fabian Kuhn 26

What About General Graphs

UNI

FREIBURG

* Can we efficiently compute a maximum matching if G is not
bipartite?

* How good is a maximal matching?

— A matching that cannot be extended...

 Vertex Cover:setS C IV of nodes such that
v{u,v} € E, fuvins # 0.

<o

* A vertex cover covers all edges by incident nodes

Algorithm Theory, WS 2019/20 Fabian Kuhn 27

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: |[M| < |S]

Proof:
* At least one node of every edge {u,v} € Misin S
* Needs to be a different node for different edges from M

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Vertex Cover vs Matching

UNI
f

FREIBURG

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, |S| < 2|M|

Proof:

* M is maximal: for every edge {u, v} € E, either u or v (or both)
are matched

 Everyedge e € E is “covered” by at least one matching edge

* Thus, the set of the nodes of all matching edges gives a vertex
cover S of size |S| = 2|M]|.

Algorithm Theory, WS 2019/20 Fabian Kuhn 29

Maximal Matching Approximation

UNI
f

FREIBURG

Theorem: For any maximal matching M and any maximum matching

M*, it IIOIdS tllat
— 2 u

Proof:

Theorem: The set of all matched nodes of a maximal matching M is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2019/20 Fabian Kuhn 30

UNI

Augmenting Paths

FREIBURG

Consider a matching M of a graph ¢ = (V,E):
* Anodev €V iscalled free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free
node and visits edges in E \ M and edges in M alternatingly.

free nodes

* Matching M can be improved using an augmenting path by
switching the role of each edge along the path

Algorithm Theory, WS 2019/20 Fabian Kuhn 31

UNI

Augmenting Paths

FREIBURG

Theorem: A matching M of G = (V, E) is maximum if and only if
there is no augmenting path.

Proof:
e Consider non-max. matching M and max. matching M* and define
F:=M\M~, F*:=M"\M

* Notethat FNF*=@and |F| < |F*|
 Each node v € V isincident to at most one edge in both F and F~
« F U F”induces even cycles and paths

O e e)

O e e e)

O e e e)

Algorithm Theory, WS 2019/20 Fabian Kuhn 32

Finding Augmenting Paths

FREIBURG

2
=
free nodes
/7 R
LAV augmenting path
,/ ,z’
e
,/
odd cycle
Algorithm Theory, WS 2019/20 Fabian Kuhn 33

Blossoms

UNI
FREIBURG

* If we find an odd cycle...

free node () f
Graph G "
S ®
Matching M 3
contract
blossom @\
.contracted blossom

N

Graph G’

Matching M’ = M \ {e, e’}
is a matching of G'.

blossom
Algorithm Theory, WS 2019/20 Fabian Kuhn 34

Contracting Blossoms

UNI
f

FREIBURG

Lemma: Graph G has an augmenting path w.r.t. matching M iff G’
has an augmenting path w.r.t. matching M’

i

{

Note: If stem has length 0,
root v of blossom is free
and thus also the node v’
is free in G'.

Also: The matching M can be computed efficiently from M'.

Algorithm Theory, WS 2019/20 Fabian Kuhn 35

UNI

Edmond’s Blossom Algorithm

FREIBURG

Algorithm Sketch:
1. Build a tree for each free node

2. Starting from an explored node u at even distance from a free
node f in the tree of f, explore some unexplored edge {u, v}:

1. If visan unexplored node, v is matched to some neighbor w:
add w to the tree (w is now explored)

2. Ifvisexplored and in the same tree:
at odd distance from root - ignore and move on
at even distance from root - blossom found

3. Ifvisexplored and in another tree
at odd distance from root - ignore and move on
at even distance from root = augmenting path found

Algorithm Theory, WS 2019/20 Fabian Kuhn 36

Running Time

Finding a Blossom: Repeat on smaller graph
Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time O (imn?).

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

