IIF

Chapter 6
 Graph Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Circulations with Demands

Given: Directed network $G=(V, E)$ with

- Edge capacities $c_{e}>0$ for all $e \in E$
- Node demands $d_{v} \in \mathbb{R}$ for all $v \in V$
- $d_{v}>0$: node needs flow and therefore is a sink
- $d_{v}<0$: node has a supply of $-d_{v}$ and is therefore a source
$-d_{v}=0$: node is neither a source nor a sink

Flow: Function $f: E \rightarrow \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: 0 \leq f(e) \leq c_{e}$
- Demand Conditions: $\forall v \in V: \quad f^{\text {in }}(v)-f^{\text {out }}(v)=d_{v}$

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Reduction to Maximum Flow

- Add "super-source" s^{*} and "super-sink" t^{*} to network

Circulation: Demands and Lower Bounds

Given: Directed network $G=(V, E)$ with

- Edge capacities $c_{e}>0$ and lower bounds $\mathbf{0} \leq \ell_{e} \leq c_{e}$ for $\boldsymbol{e} \in E$
- Node demands $d_{v} \in \mathbb{R}$ for all $v \in V$
- $d_{v}>0$: node needs flow and therefore is a sink
$-d_{v}<0$: node has a supply of $-d_{v}$ and is therefore a source
$-d_{v}=0$: node is neither a source nor a sink

Flow: Function $f: E \rightarrow \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E: \quad \ell_{e} \leq f(e) \leq c_{e}$
- Demand Conditions: $\forall v \in V: \quad f^{\text {in }}(v)-f^{\text {out }}(v)=d_{v}$

Objective: Does a flow f satisfying all conditions exist?
If yes, find such a flow f.

Solution Idea

- Define initial circulation $f_{0}(e)=\ell_{e}$ Satisfies capacity constraints: $\forall e \in E: \ell_{e} \leq f_{0}(e) \leq c_{e}$
- Define

$$
L_{v}:=f_{0}^{\text {in }}(v)-f_{0}^{\text {out }}(v)=\sum_{e \text { into } v} \ell_{e}-\sum_{e \text { out of } v} \ell_{e}
$$

- If $L_{v}=d_{v}$, demand condition is satisfied at v by f_{0}, otherwise, we need to superimpose another circulation f_{1} such that

$$
d_{v}^{\prime}:=f_{1}^{\text {in }}(v)-f_{1}^{\text {out }}(v)=d_{v}-L_{v}
$$

- Remaining capacity of edge $e: c_{e}^{\prime}:=c_{e}-\ell_{e}$
- We get a circulation problem with new demands d_{v}^{\prime}, new capacities c_{e}^{\prime}, and no lower bounds

Eliminating a Lower Bound: Example

Lower bound of 2

Reduce to Problem Without Lower Bounds

Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$:

- Capacity: For each edge $e \in E: \ell_{e} \leq f(e) \leq c_{e}$
- Demand: For each node $v \in V: f^{\text {in }}(v)-f^{\text {out }}(v)=d_{v}$

Model lower bounds with supplies \& demands:

Create Network \boldsymbol{G}^{\prime} (without lower bounds):

- For each edge $e \in E: c_{e}^{\prime}=c_{e}-\ell_{e}$
- For each node $v \in V: d_{v}^{\prime}=d_{v}-L_{v}$

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in G (with lower bounds) if and only if there is feasible circulation in G^{\prime} (without lower bounds).

- Given circulation f^{\prime} in $G^{\prime}, f(e)=f^{\prime}(e)+\ell_{e}$ is circulation in G
- The capacity constraints are satisfied because $f^{\prime}(e) \leq c_{e}-\ell_{e}$
- Demand conditions:

$$
\begin{aligned}
f^{\mathrm{in}}(v)-f^{\text {out }}(v) & =\sum_{e \text { into } v}\left(\ell_{e}+f^{\prime}(e)\right)-\sum_{e \text { out of } v}\left(\ell_{e}+f^{\prime}(e)\right) \\
& =L_{v}+\left(d_{v}-L_{v}\right)=d_{v}
\end{aligned}
$$

- Given circulation f in $G, f^{\prime}(e)=f(e)-\ell_{e}$ is circulation in G^{\prime}
- The capacity constraints are satisfied because $\ell_{e} \leq f(e) \leq c_{e}$
- Demand conditions:

$$
\begin{aligned}
f^{\prime \text { in }}(v)-f^{\prime \text { out }}(v) & =\sum_{e \text { into } v}\left(f(e)-\ell_{e}\right)-\sum_{e \text { out of } v}\left(f(e)-\ell_{e}\right) \\
& =d_{v}-L_{v}
\end{aligned}
$$

Integrality

Theorem: Consider a circulation problem with integral capacities, flow lower bounds, and node demands. If the problem is feasible, then it also has an integral solution.

Proof:

- Graph G^{\prime} has only integral capacities and demands
- Thus, the flow network used in the reduction to solve circulation with demands and no lower bounds has only integral capacities
- The theorem now follows because a max flow problem with integral capacities also has an optimal integral solution
- It also follows that with the max flow algorithms we studied, we get an integral feasible circulation solution.

Matrix Rounding

- Given: $p \times q$ matrix $D=\left\{d_{i, j}\right\}$ of real numbers
- row \boldsymbol{i} sum: $a_{i}=\sum_{j} d_{i, j}, \quad$ column \boldsymbol{j} sum: $b_{j}=\sum_{i} d_{i, j}$
- Goal: Round each $d_{i, j}$, as well as a_{i} and b_{j} up or down to the next integer so that the sum of rounded elements in each row (column) equals the rounded row (column) sum
- Original application: publishing census data

Example:

3.14	6.80	7.30	17.24	
9.60	2.40	0.70	12.70	
3.60	1.20	6.50	11.30	
16.34	10.40	14.50		

original data

3	7	7	17
10	2	1	13
3	1	7	11
16	10	15	

possible rounding

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn't work

0.35	0.35	0.35	1.05
0.55	0.55	0.55	1.65
0.90	0.90	0.90	

original data

0	0	0	0
1	1	1	3
1	1	1	

rounding to nearest integer

0	0	1	1
1	1	0	2
1	1	1	

feasible rounding

Reduction to Circulation

3.14	6.80	7.30	17.24
9.60	2.40	0.70	12.70
3.60	1.20	6.50	11.30
16.34	10.40	14.50	

Matrix elements and row/column sums give a feasible circulation that satisfies all lower bound, capacity, and demand constraints
rows:
columns:

all demands $d_{v}=0$

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

- The matrix entries $d_{i, j}$ and the row and column sums a_{i} and b_{j} give a feasible circulation for the constructed network
- Every feasible circulation gives matrix entries with corresponding row and column sums (follows from demand constraints)
- Because all demands, capacities, and flow lower bounds are integral, there is an integral solution to the circulation problem
\rightarrow gives a feasible rounding!

Gifts-Children Graph

- Which child likes which gift can be represented by a graph

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added
Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size $n / 2$ (every node is matched)

Bipartite Graph

Definition: A graph $G=(V, E)$ is called bipartite iff its node set can be partitioned into two parts $V=V_{1} \cup V_{2}$ such that for each edge $\{u, v\} \in E$,

$$
\left|\{u, v\} \cap V_{1}\right|=1 .
$$

- Thus, edges are only between the two parts

Santa's Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift iff there is a matching of size \#children

Clearly, every matching is at most as big

If \#children = \#gifts, there is a solution iff there is a perfect matching

Reducing to Maximum Flow

- Like edge-disjoint paths...

all capacities are 1

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the constructed graph induces a maximum bipartite matching of G.

Proof:

1. An integer flow f of value $|f|$ induces a matching of size $|f|$

- Left nodes (gifts) have incoming capacity 1
- Right nodes (children) have outgoing capacity 1
- Left and right nodes are incident to ≤ 1 edge e of G with $f(e)=1$

2. A matching of size k implies a flow f of value $|f|=k$

- For each edge $\{u, v\}$ of the matching:

$$
f((s, u))=f((u, v))=f((v, t))=1
$$

- All other flow values are 0

Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be computed in time $O(m \cdot n)$.

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size $n / 2$.
- There is no perfect matching, iff there is an $s-t$ cut of size $<n / 2$ in the flow network.

$s-t$ Cuts

Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_{i} \in A$: edge $\left(v_{i}, t\right)$ is in cut (A, B)
- If $u_{i} \in B$: edge $\left(s, u_{i}\right)$ is in cut (A, B)
- Otherwise (if $u_{i} \in A, v_{i} \in B$), all edges from u_{i} to some $v_{j} \in$ B are in cut (A, B)

Hall's Marriage Theorem

Theorem: A bipartite graph $G=(U \cup V, E)$ for which $|U|=|V|$ has a perfect matching if and only if

$$
\forall \boldsymbol{U}^{\prime} \subseteq \boldsymbol{U}:\left|\boldsymbol{N}\left(\boldsymbol{U}^{\prime}\right)\right| \geq\left|\boldsymbol{U}^{\prime}\right|,
$$

where $N\left(U^{\prime}\right) \subseteq V$ is the set of neighbors of nodes in U^{\prime}.
Proof: No perfect matching \Leftrightarrow some $s-t$ cut has capacity $<n / 2$

1. Assume there is U^{\prime} for which $\left|N\left(U^{\prime}\right)\right|<\left|\mathrm{U}^{\prime}\right|$:

Hall's Marriage Theorem

Theorem: A bipartite graph $G=(U \cup V, E)$ for which $|U|=|V|$ has a perfect matching if and only if

$$
\forall \boldsymbol{U}^{\prime} \subseteq \boldsymbol{U}:\left|\boldsymbol{N}\left(\boldsymbol{U}^{\prime}\right)\right| \geq\left|\boldsymbol{U}^{\prime}\right|,
$$

where $N\left(U^{\prime}\right) \subseteq V$ is the set of neighbors of nodes in U^{\prime}.
Proof: No perfect matching \Leftrightarrow some $s-t$ cut has capacity $<n / 2$
2. Assume that there is a cut (A, B) of capacity $<n / 2$

Hall's Marriage Theorem

Theorem: A bipartite graph $G=(U \cup V, E)$ for which $|U|=|V|$ has a perfect matching if and only if

$$
\forall \boldsymbol{U}^{\prime} \subseteq \boldsymbol{U}:\left|\boldsymbol{N}\left(\boldsymbol{U}^{\prime}\right)\right| \geq\left|\boldsymbol{U}^{\prime}\right|,
$$

where $N\left(U^{\prime}\right) \subseteq V$ is the set of neighbors of nodes in U^{\prime}.
Proof: No perfect matching \Leftrightarrow some s - t cut has capacity $<n$
2. Assume that there is a cut (A, B) of capacity $<n$

$$
\begin{aligned}
& \left|U^{\prime}\right|=\frac{n}{2}-x \\
& \left|N\left(U^{\prime}\right)\right| \leq y+z \\
& x+y+z<\frac{n}{2}
\end{aligned}
$$

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
- A matching that cannot be extended...
- Vertex Cover: set $S \subseteq V$ of nodes such that

$$
\forall\{\boldsymbol{u}, \boldsymbol{v}\} \in E, \quad\{\boldsymbol{u}, \boldsymbol{v}\} \cap S \neq \emptyset .
$$

- A vertex cover covers all edges by incident nodes

Vertex Cover vs Matching

Consider a matching M and a vertex cover S
Claim: $|M| \leq|S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M

Vertex Cover vs Matching

Consider a matching M and a vertex cover S
Claim: If M is maximal and S is minimum, $|S| \leq 2|M|$

Proof:

- M is maximal: for every edge $\{u, v\} \in E$, either u or v (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size $|S|=2|M|$.

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching M^{*}, it holds that

$$
|M| \geq \frac{\left|M^{*}\right|}{2}
$$

Proof:

Theorem: The set of all matched nodes of a maximal matching M is a vertex cover of size at most twice the size of a min. vertex cover.

Augmenting Paths

Consider a matching M of a graph $G=(V, E)$:

- A node $v \in V$ is called free iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \backslash M$ and edges in M alternatingly.
free nodes

alternating path

- Matching M can be improved using an augmenting path by switching the role of each edge along the path

Augmenting Paths

Theorem: A matching M of $G=(V, E)$ is maximum if and only if there is no augmenting path.

Proof:

- Consider non-max. matching M and max. matching M^{*} and define

$$
F:=M \backslash M^{*}, \quad F^{*}:=M^{*} \backslash M
$$

- Note that $F \cap F^{*}=\emptyset$ and $|F|<\left|F^{*}\right|$
- Each node $v \in V$ is incident to at most one edge in both F and F^{*}
- $F \cup F^{*}$ induces even cycles and paths

Finding Augmenting Paths

odd cycle

Blossoms

- If we find an odd cycle...

Contracting Blossoms

Lemma: Graph G has an augmenting path w.r.t. matching M iff G^{\prime} has an augmenting path w.r.t. matching M^{\prime}

Also: The matching M can be computed efficiently from M^{\prime}.

Edmond's Blossom Algorithm

Algorithm Sketch:

1. Build a tree for each free node
2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
3. If v is an unexplored node, v is matched to some neighbor w : add w to the tree (w is now explored)
4. If v is explored and in the same tree:
at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow blossom found
5. If v is explored and in another tree at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow augmenting path found

Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O\left(m n^{2}\right)$.

