

Chapter 6 Graph Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Circulations with Demands

Given: Directed network G = (V, E) with

- Edge capacities $c_e > 0$ for all $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $-d_v > 0$: node needs flow and therefore is a sink
 - $d_v < 0$: node has a supply of $-d_v$ and is therefore a source
 - $-d_v=0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E$: $0 \le f(e) \le c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Reduction to Maximum Flow

• Add "super-source" s^* and "super-sink" t^* to network

Circulation: Demands and Lower Bounds

Given: Directed network G = (V, E) with

- Edge capacities $\underline{c_e} > 0$ and lower bounds $0 \le \underline{\ell_e} \le c_e$ for $e \in E$
- Node demands $d_v \in \mathbb{R}$ for all $v \in V$
 - $-d_{\nu}>0$: node needs flow and therefore is a sink
 - $-d_v < 0$: node has a supply of $-d_v$ and is therefore a source
 - $-d_{\nu}=0$: node is neither a source nor a sink

Flow: Function $f: E \to \mathbb{R}_{\geq 0}$ satisfying

- Capacity Conditions: $\forall e \in E$: $\ell_e \leq f(e) \leq c_e$
- Demand Conditions: $\forall v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Objective: Does a flow f satisfying all conditions exist? If yes, find such a flow f.

Solution Idea

- Define initial circulation $f_0(e) = \ell_e$ Satisfies capacity constraints: $\forall e \in E : \ell_e \leq f_0(e) \leq c_e$
- Define

$$L_{v} := f_{0}^{\text{in}}(v) - f_{0}^{\text{out}}(v) = \sum_{e \text{ into } v} \ell_{e} - \sum_{e \text{ out of } v} \ell_{e}$$

• If $L_v = d_v$, demand condition is satisfied at v by f_0 , otherwise, we need to superimpose another circulation f_1 such that

$$\underline{d'_{v}} \coloneqq \underbrace{f_{1}^{\text{in}}(v) - f_{1}^{\text{out}}(v)} = \underbrace{d'_{v} - L_{v}}$$

- Remaining capacity of edge $e: c'_e := c_e \ell_e$ $f(e) \le C'_e$
- We get a circulation problem with new demands d'_v , new capacities c'_e , and no lower bounds

Eliminating a Lower Bound: Example

Reduce to Problem Without Lower Bounds

Graph G = (V, E):

- Capacity: For each edge $e \in E$: $\underline{\ell_e} \leq f(e) \leq \underline{c_e}$
- Demand: For each node $v \in V$: $f^{in}(v) f^{out}(v) = d_v$

Model lower bounds with supplies & demands:

$$\begin{array}{ccc}
 & \ell_e \leq c_e \\
\hline
 & \text{Flow: } \ell_e
\end{array}$$

Create Network G' (without lower bounds):

- For each edge $e \in E$: $c_e' = \underline{c_e} \underline{\ell_e}$
- For each node $v \in V$: $\underline{d'_v} = \underline{d_v} \underline{L_v}$

Circulation: Demands and Lower Bounds

Theorem: There is a feasible circulation in G (with lower bounds) if and only if there is feasible circulation in G' (without lower bounds).

- Given circulation f' in G', $f(e) = f'(e) + \ell_e$ is circulation in G
 - The capacity constraints are satisfied because $\overline{f'(e)} \le c_e \ell_e$
 - Demand conditions:

$$f^{\text{in}}(v) - f^{\text{out}}(v) = \sum_{e \text{ into } v} (\ell_e + f'(e)) - \sum_{e \text{ out of } v} (\ell_e + f'(e))$$
$$= L_v + (d_v - L_v) = d_v$$

- Given circulation f in G, $f'(e) = f(e) \ell_e$ is circulation in G'
 - The capacity constraints are satisfied because $\ell_e \leq f(e) \leq c_e$
 - Demand conditions:

$$f'^{\text{in}}(v) - f'^{\text{out}}(v) = \sum_{e \text{ into } v} (f(e) - \ell_e) - \sum_{e \text{ out of } v} (f(e) - \ell_e)$$
$$= d_v - L_v$$

Integrality

Theorem: Consider a circulation problem with integral capacities, flow lower bounds, and node demands. If the problem is feasible, then it also has an integral solution.

Proof:

- Graph G' has only integral capacities and demands
- Thus, the flow network used in the reduction to solve circulation with demands and no lower bounds has only integral capacities
- The theorem now follows because a max flow problem with integral capacities also has an optimal integral solution
- It also follows that with the max flow algorithms we studied,
 we get an integral feasible circulation solution.

Matrix Rounding

- Given: $p \times q$ matrix $D = \{d_{i,j}\}$ of real numbers
- row i sum: $a_i = \sum_j d_{i,j}$, column j sum: $b_j = \sum_i d_{i,j}$
- Goal: Round each $d_{i,j}$, as well as a_i and b_j up or down to the next integer so that the sum of rounded elements in each row (column) equals the rounded row (column) sum
- Original application: publishing census data

Example:

3.14	6.80	7.30	17.24
9.60	2.40	0.70	12.70
3.60	1.20	6.50	11.30
16.34	10.40	14.50	

3	7_	7	17
10	2	1	13)
3	1	7	
16	10	15	

original data

possible rounding

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Remark: Just rounding to the nearest integer doesn't work

0.35	0.35	0.35	1.05	
0.55	0.55	0.55	1.65	
0.90	0.90	0.90		
original data				

0	0	0	W O W
1	1	1	3
1	1	1	

0	0	1	1
1	1	0	2
1	1	1	

rounding to nearest integer

feasible rounding

Reduction to Circulation

					_
(3.14	6.80	7.30	17.24	4
	9.60	2.40	0.70	12.70	-
	3.60	1.20	6.50	11.30	
	16.34	10.40	14.50		•

Matrix elements and row/column sums give a feasible circulation that satisfies all lower bound, capacity, and demand constraints

all demands $d_v = 0$

Matrix Rounding

Theorem: For any matrix, there exists a feasible rounding.

Proof:

- The matrix entries $d_{i,j}$ and the row and column sums a_i and b_j give a feasible circulation for the constructed network
- Every feasible circulation gives matrix entries with corresponding row and column sums (follows from demand constraints)
- Because all demands, capacities, and flow lower bounds are integral, there is an integral solution to the circulation problem

→ gives a feasible rounding!

Gifts-Children Graph

Which child likes which gift can be represented by a graph.

Matching

Matching: Set of pairwise non-incident edges

Maximal Matching: A matching s.t. no more edges can be added

Maximum Matching: A matching of maximum possible size

Perfect Matching: Matching of size n/2 (every node is matched)

Bipartite Graph

Definition: A graph G = (V, E) is called bipartite iff its node set can be partitioned into two parts $V = V_1 \cup V_2$ such that for each edge $\{u, v\} \in E$,

$$|\{u,v\} \cap V_1| = 1.$$

Thus, edges are only between the two parts

Santa's Problem

Maximum Matching in Bipartite Graphs:

Every child can get a gift iff there is a matching of size #children

Clearly, every matching is at most as big

If #children = #gifts, there is a solution iff there is a perfect matching

Reducing to Maximum Flow

Like edge-disjoint paths...

all capacities are 1

Reducing to Maximum Flow

Theorem: Every integer solution to the max flow problem on the constructed graph induces a maximum bipartite matching of G.

Proof:

- 1. An integer flow f of value |f| induces a matching of size |f|
 - Left nodes (gifts) have incoming capacity 1
 - Right nodes (children) have outgoing capacity 1
 - Left and right nodes are incident to ≤ 1 edge e of G with f(e) = 1
- 2. A matching of size k implies a flow f of value |f| = k
 - For each edge $\{u, v\}$ of the matching:

$$f((s,u)) = f((u,v)) = f((v,t)) = 1$$

All other flow values are 0

Running Time of Max. Bipartite Matching

Theorem: A maximum matching of a bipartite graph can be computed in time $O(m \cdot n)$.

Perfect Matching?

- There can only be a perfect matching if both sides of the partition have size n/2.
- There is no perfect matching, iff there is an s-t cut of size < n/2 in the flow network.

s-t Cuts

Partition (A, B) of node set such that $s \in A$ and $t \in B$

- If $v_i \in A$: edge (v_i, t) is in cut (A, B)
- If $u_i \in B$: edge (s, u_i) is in cut (A, B)
- Otherwise (if $u_i \in A$, $v_i \in B$), all edges from u_i to some $v_j \in B$ are in cut (A, B)

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (\underline{U} \cup \underline{V}, E)$ for which $|\underline{U}| = |V|$ has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

1. Assume there is U' for which |N(U')| < |U'|:

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n/2

2. Assume that there is a cut (A, B) of capacity < n/2

Hall's Marriage Theorem

Theorem: A bipartite graph $G = (U \cup V, E)$ for which |U| = |V| has a perfect matching if and only if

$$\forall U' \subseteq U: |N(U')| \geq |U'|,$$

where $N(U') \subseteq V$ is the set of neighbors of nodes in U'.

Proof: No perfect matching \Leftrightarrow some s-t cut has capacity < n

2. Assume that there is a cut (A, B) of capacity < n

$$|U'| = \frac{n}{2} - x$$

$$|N(U')| \le y + z$$

$$x + y + z < \frac{n}{2}$$

What About General Graphs

- Can we efficiently compute a maximum matching if G is not bipartite?
- How good is a maximal matching?
 - A matching that cannot be extended...
- Vertex Cover: set $S \subseteq V$ of nodes such that $\forall \{u, v\} \in E$, $\{u, v\} \cap S \neq \emptyset$.

A vertex cover covers all edges by incident nodes

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, $|S| \le 2|M|$

Proof:

• \underline{M} is maximal: for every edge $\underline{\{u,v\}} \in E$, either u or v (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$\frac{|M|}{2} \ge \frac{|M^*|}{2}.$$

Proof:

$$S^{*}$$
: win. vertex over $|M^{\alpha}| \leq |S^{\dagger}| \leq 2|M|$

Theorem: The set of all matched nodes of a maximal matching M is a vertex cover of size at most twice the size of a min. vertex cover.

Augmenting Paths

Consider a matching M of a graph G = (V, E):

• A node $v \in V$ is called **free** iff it is not matched

Augmenting Path: A (odd-length) path that starts and ends at a free node and visits edges in $E \setminus M$ and edges in M alternatingly.

alternating path

 Matching M can be improved using an augmenting path by switching the role of each edge along the path

Augmenting Paths

Theorem: A matching M of G = (V, E) is maximum if and only if there is no augmenting path.

Proof:

• Consider non-max. matching $\underline{\underline{M}}$ and max. matching $\underline{\underline{M}}^*$ and define

$$\underline{F} \coloneqq M \setminus M^*, \qquad \underline{F}^* \coloneqq M^* \setminus M$$

- Note that $F \cap F^* = \emptyset$ and $|F| < |F^*|$
- Each node $v \in V$ is incident to at most one edge in both F and F^*
- $F \cup F^*$ induces even cycles and paths

Finding Augmenting Paths

Blossoms

• If we find an odd cycle...

Contracting Blossoms

Lemma: Graph \underline{G} has an augmenting path w.r.t. matching M iff $\underline{G'}$

Also: The matching M can be computed efficiently from M'.

Edmond's Blossom Algorithm

Algorithm Sketch:

- Build a tree for each free node
- 2. Starting from an explored node u at even distance from a free node f in the tree of f, explore some unexplored edge $\{u, v\}$:
 - 1. If v is an unexplored node, v is matched to some neighbor w: add w to the tree (w is now explored)
 - 2. If v is explored and in the same tree: at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow blossom found
 - 3. If v is explored and in another tree at odd distance from root \rightarrow ignore and move on at even distance from root \rightarrow augmenting path found

Running Time

Finding a Blossom: Repeat on smaller graph

Finding an Augmenting Path: Improve matching

Theorem: The algorithm can be implemented in time $O(mn^2)$.