
Chapter 7

Randomization

Algorithm Theory
WS 2019/20

Fabian Kuhn



Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Randomization

Randomized Algorithm:

• An algorithm that uses (or can use) random coin flips in order 
to make decisions

We will see: randomization can be a powerful tool to

• Make algorithms faster

• Make algorithms simpler

• Make the analysis simpler
– Sometimes it’s also the opposite…

• Allow to solve problems (efficiently) that cannot be solved 
(efficiently) without randomization
– True in some computational models (e.g., for distributed algorithms)

– Not clear in the standard sequential model



Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Contention Resolution

A simple starter example (from distributed computing)

• Allows to introduce important concepts

• … and to repeat some basic probability theory

Setting: 

• 𝑛 processes, 1 resource 
(e.g., communication channel, shared database, …)

• There are time slots 1,2,3,…

• In each time slot, only one process can access the resource

• All processes need to regularly access the resource

• If process 𝑖 tries to access the resource in slot 𝑡:
– Successful iff no other process tries to access the resource in slot 𝑡



Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Algorithm

Algorithm Ideas:

• Accessing the resource deterministically seems hard
– need to make sure that processes access the resource at different times

– or at least: often only a single process tries to access the resource

• Randomized solution:
In each time slot, each process tries with probability 𝑝.

Analysis:

• How large should 𝑝 be?

• How long does it take until some process 𝑥 succeeds?

• How long does it take until all processes succeed?

• What are the probabilistic guarantees?



Algorithm Theory, WS 2019/20 Fabian Kuhn 5

Analysis

Events:

• 𝓐𝒙,𝒕: process 𝑥 tries to access the resource in time slot 𝑡

– Complementary event: 𝒜𝑥,𝑡

ℙ 𝒜𝑥,𝑡 = 𝑝, ℙ 𝒜𝑥,𝑡 = 1 − 𝑝

• 𝓢𝒙,𝒕: process 𝑥 is successful in time slot 𝑡

𝒮𝑥,𝑡 = 𝒜𝑥,𝑡 ∩ ሩ

𝑦≠𝑥

𝒜𝑦,𝑡

• Success probability (for process 𝑥):



Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Fixing 𝑝

• ℙ 𝒮𝑥,𝑡 = 𝑝 1 − 𝑝 𝑛−1 is maximized for

𝒑 =
𝟏

𝒏
⟹ ℙ 𝒮𝑥,𝑡 =

1

𝑛
1 −

1

𝑛

𝑛−1

.

• Asymptotics:

For 𝑛 ≥ 2:
1

4
≤ 1 −

1

𝑛

𝑛

<
1

𝑒
< 1 −

1

𝑛

𝑛−1

≤
1

2

• Success probability:

𝟏

𝒆𝒏
< ℙ 𝓢𝒙,𝒕 ≤

𝟏

𝟐𝒏



Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Time Until First Success

Random Variable 𝑻𝒊:

• 𝑇𝑖 = 𝑡 if proc. 𝑖 is successful in slot 𝑡 for the first time

• Distribution:

• 𝑇𝑖 is geometrically distributed with parameter

𝑞 = ℙ 𝒮𝑖,𝑡 =
1

𝑛
1 −

1

𝑛

𝑛−1

>
1

𝑒𝑛
.

• Expected time until first success:

𝔼 𝑻𝒊 =
𝟏

𝒒
< 𝒆𝒏



Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Time Until First Success

Failure Event 𝓕𝒙,𝒕: Process 𝑥 does not succeed in time slots 1,… , 𝑡

• The events 𝒮𝑥,𝑡 are independent for different 𝑡:

ℙ ℱ𝑥,𝑡 = ℙ ሩ

𝑟=1

𝑡

𝒮𝑥,𝑟 =ෑ

𝑟=1

𝑡

ℙ 𝒮𝑥,𝑟 = 1 − ℙ 𝒮𝑥,𝑟
𝑡

• We know that ℙ 𝒮𝑥,𝑟 > Τ1 𝑒𝑛:

ℙ ℱ𝑥,𝑡 < 1 −
1

𝑒𝑛

𝑡

< 𝑒− ൗ𝑡 𝑒𝑛



Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Time Until First Success

No success by time 𝑡: ℙ ℱ𝑥,𝑡 < 𝑒− Τ𝑡 𝑒𝑛

𝑡 = ⌈𝑒𝑛⌉: ℙ ℱ𝑥,𝑡 < Τ1 𝑒

• Generally if 𝑡 = Θ(𝑛): constant success probability

𝑡 ≥ 𝑒𝑛 ⋅ 𝑐 ⋅ ln 𝑛: ℙ ℱ𝑥,𝑡 < ൗ1 𝑒𝑐⋅ln 𝑛 = Τ1 𝑛𝑐

• For success probability 1 − Τ1 𝑛𝑐, we need 𝑡 = Θ(𝑛 log 𝑛).

• We say that 𝑖 succeeds with high probability in 𝑂(𝑛 log 𝑛) time.



Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Time Until All Processes Succeed

Event 𝓕𝒕: some process has not succeeded by time 𝑡

ℱ𝑡 =ራ

𝑥=1

𝑛

ℱ𝑥,𝑡

Union Bound: For events ℰ1, … , ℰ𝑘 ,

ℙ ራ

𝑥

𝑘

ℰ𝑥 ≤෍

𝑥

𝑘

ℙ ℰ𝑥

Probability that not all processes have succeeded by time 𝑡:

ℙ ℱ𝑡 = ℙ ራ

𝑥=1

𝑛

ℱ𝑥,𝑡 ≤ ෍

𝑥=1

𝑛

ℙ ℱ𝑥,𝑡 < 𝑛 ⋅ 𝑒− ൗ𝑡 𝑒𝑛 .



Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Time Until All Processes Succeed

Claim: With high probability, all processes succeed in the first
𝑂 𝑛 log 𝑛 time slots.

Proof:

• ℙ ℱ𝑡 < 𝑛 ⋅ 𝑒−𝑡/𝑒𝑛

• Set 𝑡 = ⌈𝑒𝑛 ⋅ 𝑐 + 1 ln 𝑛⌉

Remark: Θ 𝑛 log 𝑛 time slots are necessary for all processes to 
succeed with reasonable probability


