Chapter 7
Randomization

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI
I

FREIBURG



Randomization

Randomized Algorithm:

e An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...

* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization
— True in some computational models (e.g., for distributed algorithms)
— Not clear in the standard sequential model

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG



Contention Resolution

UNI

FREIBURG

A simple starter example (from distributed computing)
* Allows to introduce important concepts
e ...and to repeat some basic probability theory

Setting:

* n processes, 1 resource
(e.g., communication channel, shared database, ...)

* There are time slots 1,2,3, ...
* In each time slot, only one process can access the resource
* All processes need to regularly access the resource

* If process i tries to access the resource in slot t:
— Successful iff no other process tries to access the resource in slot t

Algorithm Theory, WS 2019/20 Fabian Kuhn 3



Algorithm

UNI
f

FREIBURG

Algorithm Ideas:
* Accessing the resource deterministically seems hard

— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probability p.

Analysis:

* How large should p be?

* How long does it take until some process x succeeds?
* How long does it take until all processes succeed?

* What are the probabilistic guarantees?

Algorithm Theory, WS 2019/20 Fabian Kuhn 4



Analysis

UNI

FREIBURG

Events:

* A, .. process x tries to access the resource in time slot ¢

— Complementary event: A, ;

P(Ay:) =p, P(Ayx)=1-p

* 8, process x is successful in time slot ¢

CS‘x,t — ‘Ax,t N qu,t

y#EX

* Success probability (for process x):

Algorithm Theory, WS 2019/20 Fabian Kuhn



Fixing p

UNI

FREIBURG

« P(S.:) =p(1—p)"1is maximized for
n

* Asymptotics:

Forn = 2:

-l>|r—\
/\
p—

I
S| =
N~

S
N\
Q0] p—
N\
-~
p—
I
S| =

* Success probability:

1 1
a < [P)('Sxt) < —n

Algorithm Theory, WS 2019/20 Fabian Kuhn

1 1 1\" "
p=— = P(S)=—{1--] .



Time Until First Success

UNI
FREIBURG

Random Variable T';:

 T; =tif proc.iissuccessful in slot t for the first time

e Distribution:

e T;is geometrically distributed with parameter

1 1\""' 1
q:P(Si,t)ZE 1—5 >a.

* Expected time until first success:

1
E|T;] = a <en

Algorithm Theory, WS 2019/20 Fabian Kuhn 7



Time Until First Success

UNI
FREIBURG

Failure Event ¥, ;: Process x does not succeed in time slots 1, ..., ¢

* The events S, ; are independent for different ¢:

P(Fy) = (_]

* We know that P(Sx’r) > 1/,

1 t
P(F,,) < (1 = —) < e /en

en

Algorithm Theory, WS 2019/20 Fabian Kuhn 8



Time Until First Success

UNI
f

FREIBURG

No success by time t: [P)(Tx,t) < g~ /en
t = [en]: IP(Tx,t) <1/
* Generallyif t = ©(n): constant success probability

t=>en-c-lnn: IP’(fo,t) < 1/ec-1nn =1/ .
* For success probability 1 — 1/, we need t = O(nlogn).

* We say that i succeeds with high probability in O(nlogn) time.

Algorithm Theory, WS 2019/20 Fabian Kuhn 9



Time Until All Processes Succeed

Event F;: some process has not succeeded by time t

n
Fe = UTx,t
x=1

Union Bound: For events &4, ..., &,

k k
P U o 2 P(E.)
X X
Probability that not all processes have succeeded by time t:

P(F,) =P (U ?x,t> < z P(Fy.) <n-eTen,
x=1 x=1

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG



Time Until All Processes Succeed

UNI
FREIBURG

Claim: With high probability, all processes succeed in the first
O(nlogn) time slots.

Proof:
e P(F,) <n-et/en
« Sett =[en:(c+1)Inn]

Remark: @(nlogn) time slots are necessary for all processes to
succeed with reasonable probability

Algorithm Theory, WS 2019/20 Fabian Kuhn 11



