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Randomization

Randomized Algorithm:

e An algorithm that uses (or can use) random coin flips in order
to make decisions

We will see: randomization can be a powerful tool to
* Make algorithms faster

* Make algorithms simpler

 Make the analysis simpler

— Sometimes it’s also the opposite...

* Allow to solve problems (efficiently) that cannot be solved
(efficiently) without randomization

— True in some computational models (e.g., for distributed algorithms)

— Not clear in the standard sequential model
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Contention Resolution
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A simple starter example (from distributed computing)
* Allows to introduce important concepts
e ...and to repeat some basic probability theory

O
Setting: ( M

* n processes, 1 resource
(e.g., communication channel, shared database, ...)

* There are time slots 1,2,3, ...
* In each time slot, only one process can access the resource
* All processes need to regularly access the resource

* If process i tries to access the resource in slot t:
— Successful iff no other process tries to access the resource in slot t
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Algorithm Ideas:
* Accessing the resource deterministically seems hard

— need to make sure that processes access the resource at different times
— or at least: often only a single process tries to access the resource

 Randomized solution:
In each time slot, each process tries with probabilit

Analysis:

* How large should p be?

* How long does it take until some process x succeeds?
* How long does it take until all processes succeed?

* What are the probabilistic guarantees?
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Events:
e A, ;:process x tries to access the resource in time slot ¢
4 e
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— Complementary event: A, ;
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* Asymptotics:
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* Success probability:
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Random Variable T';:

 T; =tif proc.iissuccessful in slot t for the first time

e Distribution:
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e T;is geometrically distributed with parameter
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Time Until First Success
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Failure Event ¥ ;: Process x does not succeed in time slots 1

N
7,-(15,

* The events S, ; are independent for different ¢:

t
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A VxecK: 1+xse”
* We know that P(Sy,) > Ven: 1+
1\ ¢y
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No success by time t: [P)(Tx,t) < g~ /en
cﬂm )

t = [en]: P(Fys) < e

* Generallyift = 0(n): cons:c_acr}lgguccess probability

?‘m 1
t>en-c-Inn:P(Fy) <Y ocimn = Yne

—-’

* For success probability 1 — 1/, we need t = O(nlogn).

——

* We say that i succeeds with high probability in O(nlogn) time.
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Event F;: some process has not succeeded by time t
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Union Bound: For events &4, ..., &, A TS
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Probability that not all processes have succeeded by time t:

n n
P(F,) =P (U ?x,t> < z P(Fy.) <n-eTen,
x=1 x=1 =

Un o \pm4
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Time Until All Processes Succeed
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Claim: With high probability, all processes succeed in the first
_O(nlogn) time slots.

Proof: /
e P(F,) <n-et/en

e Sett=[en-(c+1)Inn]
‘C)_“.(C~H) QM& —(C+l) Rl w ‘ ‘

ﬂ)(g‘;)< n- e e = W-e =N

Remark: @(n log n) time slots are necessary for all processes to
succeed with reasonable probability
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