

Chapter 7 Randomization

Algorithm Theory WS 2019/20

Philipp Bamberger

Primality Testing

Problem: Given a natural number $n \ge 2$, is n a prime number?

Simple primality test:

- 1. **if** n is even **then**
- 2. return (n=2)
- 3. for $i \coloneqq 1$ to $|\sqrt{n}/2|$ do
- 4. if 2i + 1 divides n then
- 5. **return false**
- 6. return true
- Running time: $O(\sqrt{n})$

A Better Algorithm?

- How can we test primality efficiently?
- We need a little bit of basic number theory...

Square Roots of Unity: If p is a prime, the only solutions of the equation $x^2 \equiv 1 \pmod{p}$ are $x \equiv \pm 1 \pmod{p}$

• If we find an $x \not\equiv \pm 1 \pmod{n}$ such that $x^2 \equiv 1 \pmod{n}$, we can conclude that n is not a prime.

Algorithm Idea

Claim: Let p > 2 be a prime number such that $p - 1 = 2^s d$ for an integer $s \ge 1$ and some odd integer d. Then for all $a \in \{1, ..., p - 1\}$

$$a^d \equiv 1 \pmod{p}$$
 or $a^{2^r d} \equiv -1 \pmod{p}$ for some $0 \le r < s$.

Proof:

• Fermat's Little Theorem: Given a prime number p,

$$\forall a \in \{1, ..., p-1\}: a^{p-1} \equiv 1 \pmod{p}$$

Primality Test

We have: If n is an odd prime and $n-1=2^sd$ for an integer $s\geq 1$ and an odd integer d. Then for all $a\in\{1,\ldots,n-1\}$,

 $a^d \equiv 1 \pmod{n}$ or $a^{2^r d} \equiv -1 \pmod{n}$ for some $0 \le r < s$.

Idea: If we find an $a \in \{1, ..., n-1\}$ such that

 $a^d \not\equiv 1 \pmod{n}$ and $a^{2^r d} \not\equiv -1 \pmod{n}$ for all $0 \le r < s$, we can conclude that n is not a prime.

- For every odd composite n>2, at least $^3/_4$ of all possible a satisfy the above condition
- How can we find such a *witness* a efficiently?

Miller-Rabin Primality Test

• Given a natural number $n \ge 2$, is n a prime number?

Miller-Rabin Test:

- 1. **if** n is even **then return** (n = 2)
- 2. compute s, d such that $n-1=2^sd$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x = a^d \mod n$;
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for r := 1 to s 1 do
- 7. $x = x^2 \mod n$;
- 8. if x = n 1 then return probably prime;
- 9. return composite;

Analysis

Theorem:

- If n is prime, the Miller-Rabin test always returns **true**.
- If n is composite, the Miller-Rabin test returns **false** with probability at least $\frac{3}{4}$.

Corollary: If the Miller-Rabin test is repeated k times, it fails to detect a composite number n with probability at most 4^{-k} .

Running Time

Cost of Modular Arithmetic:

- Representation of a number $x \in \mathbb{Z}_n$: $O(\log n)$ bits
- Cost of adding two numbers $x + y \mod n$:

- Cost of multiplying two numbers $x \cdot y \mod n$:
 - It's like multiplying degree $O(\log n)$ polynomials
 → use FFT to compute $z = x \cdot y$

Running Time

Cost of exponentiation $x^d \mod n$:

- Can be done using $O(\log d)$ multiplications
- Base-2 representation of d: $d = \sum_{i=0}^{\lfloor \log d \rfloor} d_i 2^i$

Fast exponentiation:

```
1. y := 1;
```

2. for $i = \lfloor \log d \rfloor$ to 0 do

3. $y := y^2 \mod n$;

4. **if** $d_i = 1$ **then** $y := y \cdot x \mod n$;

5. **return** *y*;

• Example: $d = 22 = 10110_2$

Running Time

Theorem: One iteration of the Miller-Rabin test can be implemented with running time $O(\log^2 n \cdot \log \log n \cdot \log \log \log n)$.

- **1.** if n is even then return (n = 2)
- 2. compute s, d such that $n 1 = 2^s d$;
- 3. choose $a \in \{2, ..., n-2\}$ uniformly at random;
- 4. $x = a^d \mod n$;
- 5. if x = 1 or x = n 1 then return probably prime;
- 6. for r := 1 to s 1 do
- 7. $x \coloneqq x^2 \mod n$;
- 8. if x = n 1 then return probably prime;
- 9. return composite;

Deterministic Primality Test

- If a conjecture called the generalized Riemann hypothesis (GRH) is true, the Miller-Rabin test can be turned into a polynomialtime, deterministic algorithm
 - \rightarrow It is then sufficient to try all $a \in \{1, ..., O(\log^2 n)\}$
- It has long not been proven whether a deterministic, polynomial-time algorithm exists
- In 2002, Agrawal, Kayal, and Saxena gave an $\tilde{O}(\log^{12} n)$ -time deterministic algorithm
 - Has been improved to $\tilde{O}(\log^6 n)$
- In practice, the randomized Miller-Rabin test is still the fastest algorithm