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Randomized Quicksort
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Quicksort:

Sy <v % S, > v

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
if #5 < 1 thenreturn S
else { choose pivot element v in §;
partition S into S, with elements < v,
and S, with elements > v
return | Quick(S,) |v |Quick(S;)

end;
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Randomized Quicksort Analysis
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Randomized Quicksort: pick uniform random element as pivot

Running Time of sorting n elements:
e Let’s just count the number of comparisons

* In the partitioning step, all n — 1 non-pivot elements have to be
compared to the pivot

* Number of comparisons:

n—1 + #comparisons in recursive calls
0&?4“"()' o« M—Hoo\ —> faudowm w/:o.élc

* If rank of pivotis r:
recursive calls withr — 1 and n — r elements
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Law of Total Expectation ;

UNI

* Given a random l/grlable X and X-R ’,‘%
* asetofevents A7, ..., A that partition () %
— E.g., for a second random variable Y, we could have
A ={w€eQ:Y(w) =1}
v-SL-R
’IZ

ZP(A) ELX | 4;]) ZP(Y y) - E[X|Y =]

Law of Total Expectation

Example:
« X:outcome of rolling a die _Elx]}=3.8
e Ay ={Xiseven}, A; = {Xisodd}

A
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Randomized Quicksort Analysis

UNI
FREIBURG

Random variables: Cen-A+lpre, =BT+ *CJ

e (:total number of comparisons (for a given array of length n)

* R:rank of first pivot
* (p, C,: number of comparisons for the 2 recursive calls

E[C] = n — 1+ E[C,] + E[C,]

Law of Total Expectation:

=ZIP(R=7")-IE[C|R=T]

\\

zP(R_r) m—r]+ELD
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Randomized Quicksort Analysis
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We have seen that: PR = r)= 1
h

n

%gzzp(ze=7~).(n—1+W+E[Cr|R=r])

. Tr-1) TCu-r)
Define:

* T(n): expected number of comparisons when sorting n elements
E[C] = T(n)
E[C,IR=71]=T(r —1)
E[C/IR=r]=T(n—r)

Recursion:
n

1
T(n) =;E-(n—1+T(r—1)+T(n—r))
T(0) =T(1) = 0
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksort is T(n) < 2nlnn.

Proof: ludwhon ow w
n

1
T =) - (n=1+T(-D+T(-r), T(0)=C
r=1n
et u—rfﬁ gf‘
T un-1+ '/’G (T(§)+T(m—i-/t)) < 1 = :0'(“’ ~)

Algorithm Theory, WS 2019/20 Fabian Kuhn 7



Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof: o

4_ n
T(n)Sn—1+—-fx1nxdx
n 1 \
2 1 2 2
z -7:'+C) [jxlnxdx=xmx—x }
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Alternative Analysis
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Array to sort: [@,3,1,10,14,8,12,_9,_4,6,5,15,2,13,11]

Viewing quicksort run as a tree:

!
RN
344 (@23 Co, 14, 8. (R, 5,45, 73]
0\ N
[31.¢2] [6] Croy9 m]  [14 45 137
/N 7\ /N
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Comparisons
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 Comparisons are only between pivot and non-pivot elements

* Every element can only be the pivot once:
— every 2 elements can only be compared once!

* W.l.o.g.,, assume that the elements to sortare 1,2, ...,n

* Elementsi andj are compared if and only if eitheri orjisa
pivot before any element h:i < h < j is chosen as pivot

— i.e., iff i is an ancestor of j or j is an ancestor of i .
| Y
“ oL v A
— — ] 1 /\
N J
J- +4 elewents

P(comparison betw.i and j) =j 11
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Counting Comparisons
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Random variable for every pair of elements (i, j):

if there is a comparison between i and j

otherwise

lE[X.J = '\’(X;j = /1) =

Number of comparisons: X

* Whatis E[X]?
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Randomized Quicksort Analysis
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Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.
Proof:

* Linearity of expectation:
For all random variables X3, ..., X,, and all a4, ..., a,, € R,

n
E [z aiXi
[

X'—'i;l:‘)(-.-& E[X] E[ix ] 2&[)‘\\] A\\--M 22 ) =ien

< g

Cli[E[Xi] .

(4J i+1
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Randomized Quicksort Analysis

Theorem: The expected number of comparisons when sorting n
elements using randomized quicksortis T(n) < 2nlnn.

Proof:
n-1 n 1 n—-1n-i+1
E[X] = 2 2 - 2 z 1
X L j—i+1 , k
( l=1‘]=l+1 ;",.L i=1 k=2
b2 w_
22 2%
Horwowic Seres: 1SA ez
S sH(u) -1 & ’
U(u)'»’-? % zH(u)-1 & lau

W) < 1+ | & Ulwn) lwa & 2uluw)
u) & 1+ (uu
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Quicksort: High Probability Bound
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 We have seen that the number of comparisons of randomized
quicksort is O(nlogn) in expectation.

 (Can we also show that the number of comparisons is

O(nlogn) with high probability? 5.4

 Recall:

On each recursion level, each pivot is compared once with
each other element that is still in the same “part”
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Counting Number of Comparisons

 We looked at 2 ways to count the number of comparisons
— recursive characterization of the expected number
— number of different pairs of values that are compared

Let’s consider yet another way:
 Each comparison is between a pivot and a non-pivot

* | How many times is a specific array element x compared as a
non-pivot?

Value x is compared as a non-pivot to a pivot once in every
recursion level until one of the following two conditions apply:

1. xischosenasapivot Conrisaus of x a3 o givot

2. xisalone = degl, Uy x blcowa fivot or alowe
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Successful Recursion Level G =
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* Consider a specific recursion level £ ‘[’ﬁx/_)

e
* Assume that at the beginning of recursion level £, element x is

in a sub-array of length K, that still needs to be sorted.

* If x has been chosen as a pivot before level £, we set K, .= 1

Definition: We say that recursion level £ is successful for element
x iff the following is true:

2
Ko =1 or Kppqs5-Ky
[ x_ 3
/ \
[ 3 C x
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Successful Recursion Level
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Lemma: For every recursion level £ and every array element x, it
holds that level £ is successful for x with probability at least 1/5,
independently of what happens in other recursion levels.

Proof: L1 o K, =/ -
+4
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Number of Successful Recursion LeveI;gn)

Lemma: If among the first £ recursion levels, at least logs, (1)
are successful for element x, we have K= 1.

Proof:
K =uw l(;ﬂ ‘-‘l(-. ,f I-tuJ VS Suee. l'('.m
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Chernoff Bounds

UNI
f

FREIBURG

* LetXy,..., X, beindependent 0-1 random variables and define
pl = P(Xl = 1). i& ?i:@ iov- all §: X"’B'ﬂt\(“\?)

* Consider the random variable X = }.7*, X; ’ %
 Wehavepu = E[X] =Y, E[X;]=X"p; / €
@- )

Chernoff Bound (Lower Tail):  P(x. %)« e,"‘;
Je
V8> 0: P(X < (1—8)p) < e 5°1/2

Chernoff Bound (Upper Tail):

e’ H
V> 0: PX>A4+d)p) < <(1 n 6)1+6) T e—8%1/3

holdsfor 6 < 1
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Chernoff Bounds, Example
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Assume that a fair coin is flipped n times. What is the probability
to have

1. lessthann/3 heads?

2. more than 0.51n tails?

3. lessthan™/, —+/c - nlnn tails?
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Number of Comparisons for x
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Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O(log n) times.

Proof:
show: Ul g Houe e logy M suce. vec levls amoug Koo fiat O(ge) levels
Qe

. k
K r&:.’-ﬁﬂlj ‘ X’__, 4 level i is succ. X'=ZX" IE[)‘_Y?

!
' o el“ ' ; A 3

k=% clut)
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Number of Comparisons for x

Lemma: For every array element x, with high probability, as a
non-pivot, x is compared to a pivot at most O (log n) times.

Proof:
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Number of Comparisons
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Theorem: With high probability, the total number of
comparisons is at most O(nlogn).

Proof:
Lasl' ,'CW\-M& “+ (.lw’eu Low.,ﬂ

me«l,:l;$7 Lot all elomed o Compred &3 o -pivef OiF wosé O /g‘*/ ties
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