

Chapter 7 Randomization

Algorithm Theory WS 2019/20

Fabian Kuhn

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- Example: primality test

Minimum Cut

Reminder: Given a graph G = (V, E), a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (A, B): # of edges crossing the cut

For weighted graphs, total edge weight crossing the cut

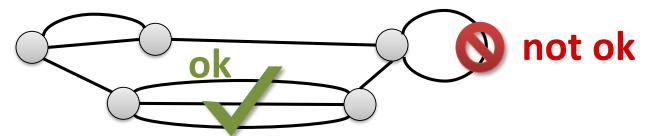
Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Maximum-flow based algorithm:

- Fix s, compute min s-t-cut for all $t \neq s$
- $O(m \cdot \lambda(G)) = O(mn)$ per s-t cut
- Gives an $O(mn\lambda(G)) = O(mn^2)$ -algorithm

Edge Contractions

 In the following, we consider multi-graphs that can have multiple edges (but no self-loops)



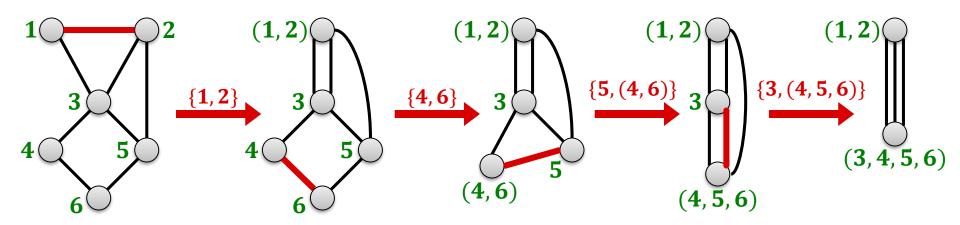
Contracting edge $\{u, v\}$:

- Replace nodes u, v by new node w
- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes



Cuts:

- Assume in the contracted graph, w represents nodes $S_w \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do
 contract a uniformly random edge
return cut induced by the last two remaining nodes
 (cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum cut with probability at least $1/O(n^2)$.

We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O(n^2)$.

- There are n-2 contractions, each can be done in time O(n).
- We will see this later.

Contractions and Cuts

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

- Contracting an edge $\{x, y\}$ merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
 - For a node u of the contracted graph, let S_u be the set of original nodes that have been merged into u (the nodes that u represents)
 - Consider a cut (A, B) of the contracted graph
 - -(A',B') with

$$A' \coloneqq \bigcup_{u \in A} S_u$$
, $B' \coloneqq \bigcup_{v \in B} S_v$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut (A', B').

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

- 1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
- 2. If no edge of (A, B) is contracted, no two nodes $u \in A$, $v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

- Min cut has size $k \Longrightarrow$ all nodes have degree $\ge k$
 - A node v of degree < k gives a cut $(\{v\}, V \setminus \{v\})$ of size < k
- Number of edges $m = \frac{1}{2} \cdot \sum_{v} \deg(v)$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction i, there are n+1-i nodes \rightarrow and thus $\geq (n+1-i)k/2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most $^2/_{n+1-i}$.
- Event \mathcal{E}_i : edge contracted in step *i* is **not** crossing (A, B)

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/n(n-1).

- $\mathbb{P}(\mathcal{E}_{i+1}|\mathcal{E}_1 \cap \dots \cap \mathcal{E}_i) \ge 1 \frac{2}{n-i} = \frac{n-i-2}{n-i}$
- No edge crossing (A,B) contracted: event $\mathcal{E} = \bigcap_{i=1}^{n-2} \mathcal{E}_i$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in $c \cdot \binom{n}{2} \cdot \ln n$ iterations:

$$\left(1 - \frac{1}{\binom{n}{2}}\right)^{c \cdot \binom{n}{2} \cdot \ln n} < e^{-c \ln n} = \frac{1}{n^c}$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

• It remains to show that each instance can be implemented in $O(n^2)$ time.

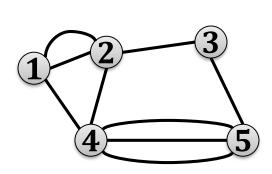
Implementing Edge Contractions

Edge Contraction:

- Given: multigraph with n nodes
 - assume that set of nodes is $\{1, ..., n\}$
- Goal: contract edge $\{u, v\}$

Data Structure

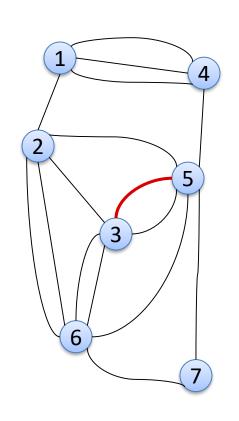
- We can use either adjacency lists or an adjacency matrix
- Entry in row i and column j: #edges between nodes i and j
- Example:



$$A = \begin{pmatrix} 0 & 2 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 3 & 0 \end{pmatrix}$$

Contracting An Edge

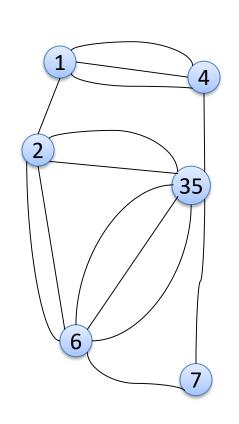
Example: Contract one of the edges between 3 and 5



	1	2	3	4	5	6	7
1	0	1	0	3	0	0	0
2	1	0	1	0	1	2	0
3	0	1	0	0	2	2	0
4	3	0	0	0	1	0	0
5	0	1	2	1	0	1	1
6	0	2	2	0	1	0	1
7	0	0	0	0	1	1	0
5}							

Contracting An Edge

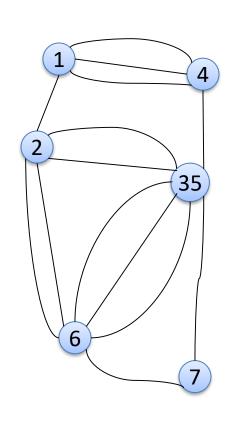
Example: Contract one of the edges between 3 and 5



	1	2	3	4	5	6	7
1	0	1	0	3	0	0	0
2	1	0	1	0	1	2	0
3	0	1	0	0	2	2	0
4	3	0	0	0	1	0	0
5	0	1	2	1	0	1	1
6	0	2	2	0	1	0	1
7	0	0	0	0	1	1	0
{3,5}	0	2		1		3	1

Contracting An Edge

Example: Contract one of the edges between 3 and 5



	1	2	35	4		6	7
1	0	1	0	3		0	0
2	1	0	2	0		2	0
35	0	2	0	1		3	1
4	3	0	1	0		0	0
6	0	2	3	0		0	1
7	0	0	1	0		1	0
{3,5}	0	2		1		3	1

Contracting an Edge

Claim: Given the adjacency matrix of an n-node multigraph and an edge $\{u, v\}$, one can contract the edge $\{u, v\}$ in time O(n).

- Row/column of combined node $\{u,v\}$ is sum of rows/columns of u and v
- Row/column of u can be replaced by new row/column of combined node $\{u,v\}$
- Swap row/column of v with last row/column in order to have the new (n-1)-node multigraph as a contiguous $(n-1)\times(n-1)$ submatrix

Finding a Random Edge

- We need to contract a uniformly random edge
- How to find a uniformly random edge in a multigraph?
 - Finding a random non-zero entry (with the right probability) in an adjacency matrix costs $O(n^2)$.

Idea for more efficient algorithm:

- First choose a random node u
 - with probability proportional to the degree (#edges) of u
- Pick a random edge of u
 - only need to look at one row \rightarrow time O(n)

Choose a Random Node

Edge Sampling:

1. Choose a node $u \in V$ with probability

$$\frac{\deg(u)}{\sum_{v \in V} \deg(v)} = \frac{\deg(u)}{2m}$$

2. Choose a uniformly random edge of u

Choose a Random Node

- We need to choose a random node u with probability $\frac{\deg(u)}{2m}$
- Keep track of the number of edges m and maintain an array with the degrees of all the nodes
 - Can be done with essentially no extra cost when doing edge contractions

Choose a random node:

```
degsum = 0;
for all nodes u \in V:
    with probability \frac{\deg(u)}{2m-\deg sum}:
        pick node u; terminate
    else
        degsum += \deg(u)
```

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O(n^2 \log n)$ times, one of the $O(n^2 \log n)$ instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum cut in $O(n^4 \log n)$ time w.h.p.

- One instance consists of n-2 edge contractions
- Each edge contraction can be carried out in time O(n)
 - Actually: O(current #nodes)
- Time per instance of the contraction algorithm: $O(n^2)$

Can We Do Better?

• Time $O(n^4 \log n)$ is not very spectacular, a simple max flow based implementation has time $O(n^4)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

- 1. The algorithm can be improved to be significantly faster than the max flow solution.
- 1. It allows to obtain strong statements about the distribution of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree $\geq k$
- Before contraction i, there are n+1-i nodes and thus at least (n+1-i)k/2 edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$\frac{k}{\frac{(n+1-i)k}{2}} = \frac{2}{n+1-i}.$$

Improving the Contraction Algorithm

• For a specific min cut (A, B), if (A, B) survives the first i contractions,

$$\mathbb{P}(\text{edge crossing } (A, B) \text{ in contraction } i+1) \leq \frac{2}{n-i}.$$

- Observation: The probability only gets large for large i
- Idea: The early steps are much safer than the late steps.
 Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase

Lemma: A given min cut (A, B) of an n-node graph G survives the first $n - \left[n / \sqrt{2} + 1 \right]$ contractions, with probability > 1 / 2.

- Event \mathcal{E}_i : cut (A, B) survives contraction i
- Probability that (A, B) survives the first n t contractions:

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n/\sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n n/\sqrt{2}$ contractions with probability $\geq 1/2$.

contract(G, t):

• Starting with n-node graph G, perform n-t edge contractions such that the new graph has t nodes.

mincut(G):

- 1. $X_1 := \min(\cot(G, n/\sqrt{2}));$
- 2. $X_2 := \min(\cot(G, n/\sqrt{2}));$
- 3. **return** min $\{X_1, X_2\}$;

Success Probability

mincut(G):

- 1. $X_1 := \min(\cot(G, n/\sqrt{2}));$
- 2. $X_2 := \min(\cot(G, n/\sqrt{2}));$
- 3. **return** min{ X_1, X_2 };

P(n): probability that the above algorithm returns a min cut when applied to a graph with n nodes.

• Probability that X_1 is a min cut \geq

Recursion:

Success Probability

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1/\log_2 n$.

Proof (by induction on n):

$$P(n) = P\left(\frac{n}{\sqrt{2}}\right) - \frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^2, \qquad P(2) = 1$$

Running Time

- 1. $X_1 := \min(\cot(G, n/\sqrt{2}));$
- 2. $X_2 := \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$
- 3. **return** min{ X_1, X_2 };

Recursion:

- T(n): time to apply algorithm to n-node graphs
- Recursive calls: $2T \binom{n}{\sqrt{2}}$
- Number of contractions to get to $n/\sqrt{2}$ nodes: O(n)

$$T(n) = 2T\left(\frac{n}{\sqrt{2}}\right) + O(n^2), \qquad T(2) = O(1)$$

Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O(n^2 \log n)$.

Proof:

Can be shown in the usual way, by induction on n

Remark:

- The running time is only by an $O(\log n)$ -factor slower than the basic contraction algorithm.
- The success probability is exponentially better!