Chapter 7
Randomization

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI
I

FREIBURG



UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:
* always a correct solution
* running time is a random variable

 Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:
e probabilistic correctness guarantee (mostly correct)

* fixed (deterministic) running time

 Example: primality test

Algorithm Theory, WS 2019/20 Fabian Kuhn 2



Minimum Cut

UNI
f

FREIBURG

Reminder: Given a graph ¢ = (V,E), a cut is a partition (4, B)

of VsuchthatV = AUB,ANB=Q,A,B+0 @ j

Size of the cut (A, B): # of edges crossing the cut

* For weighted graphs, total edge weight crossing the cut

T C@“M@A‘n’é‘

Goal: Find a cut of minimal size (i.e., of size A(G))

Maximum-flow based algorithm:
* Fix s, compute min s-t-cutforallt # s

. O(m : /1(6)) = O§mn) pgr s-t cut O M2>:C(qu)

e Gives an O(mn/l(G)) = 0(mn?)-algorithm

Algorithm Theory, WS 2019/20 Fabian Kuhn 3



Edge Contractions

|
FRE:BURG

UNI

* In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

<g ;: %’E Qnoti(/@/o
Z?‘f/

Contracting edge {u, v}:

/——OC
* Replace nodes u, v by new node w ?(/—u—’ v

* Forall edges {u,x} and {v, x}, add an edge {w, x}
 Remove self-loops created at node w

‘ contract {u, v}

Algorithm Theory, WS 2019/20 Fabian Kuhn 4




Properties of Edge Contractions

UNI
f

FREIBURG

Nodes:
* After contracting {u, v}, the new node represents u and v

e After a series of contractions, each node represents a subset of
the original nodes
(1, Z)m

|3.4.5.6)
3 | d yl
(3,4,5,6)

2

6
Cuts:

* Assume in the contracted graph, w represents nodes S,, € V

« The edges of a node w in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut (S,,,V \ S,,)

Algorithm Theory, WS 2019/20 Fabian Kuhn ' 5



Randomized Contraction Algorithm

UNI
FREIBURG

Algorithm:

while there are > 2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least 1/0(n?).

e We will show this next.

T~
Theorem: The random contraction algorithm can be implemented
in time 0(n?).
* There are n — 2 contractions, each can be done in time O(n).

* We will see this later.
Algorithm Theory, WS 2019/20 Fabian Kuhn 6



Contractions and Cuts

UNI
f

FREIBURG

Lemma: If two original nodes u, v € V are merged into the same
node of the contracted graph, there is a path connecting u and v
in the original graph s.t. all edges on the path are contracted.

Proof:

* Contracting an edge {x, y} merges the node sets represented by
x and y and does not change any of the other node sets.

* The claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2019/20 Fabian Kuhn 7



Contractions and Cuts

UNI
f

FREIBURG

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

@ ————— S
Proof: i)C:) C_CE))

e All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph G as follows:

— For a node u of the contracted graph, let S,, be the set of original nodes
that have been merged into u (the nodes that u represents)

— Consider a cut (4, B) of the contracted graph

— (4',B") with
A= US“’ B’ = US”

UEA VEB
is a cut of G.

— The edges crossing cut (4, B) are in one-to-one correspondence with the
edges crossing cut (4, B).

Algorithm Theory, WS 2019/20 Fabian Kuhn 8



Contraction and Cuts

UNI
f

FREIBURG

Lemma: The contraction algorithm outputs a cut (4, B) of the input
graph G if and only if it never contracts an edge crossing (4, B).

Proof: a\ @

1. If an edge crossing (A4, B) is contracted, a pair of nodes u € A4,
v € V is merged into the same node and the algorithm outputs
a cut different from (4, B).

2. If noedge of (4, B) is contracted, notwonodesu € A, v € B
end up in the same contracted node because every path
connecting u and v in G contains some edge crossing (4, B)

In the end there are only 2 sets = outputis (4, B)

Algorithm Theory, WS 2019/20 Fabian Kuhn 9



UNI

Getting The Min Cut SQQ‘”?‘\Q

FREIBURG

Theorem: The probability that the algorithm outputs a'minimum
cut is at least 2 [n(n — 1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k,

G has at least kn/2 edges.
\)\fvj

* Min cut has size k = all nodes have degree = k
— A node v of degree < k gives a cut ({v},V \ {v}) of size < k

Proof:

* Number of edgesm =1/, -, deg(v)= L Y Q

Z

Algorithm Theory, WS 2019/20 Fabian Kuhn ¢+ 10



UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:
* Consider a fixed min cut (4, B), assume (4, B) has size k

* The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

* Before contraction i, therearen + 1 — i nodes
2 and thus = (n+ 1 — i)k/2 edges

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i is at most

T 2

M+1-0 n+1—i
2

Algorithm Theory, WS 2019/20 Fabian Kuhn 11



Getting The Min Cut

|
FRE:BURG

UNI

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:

* If no edge crossing (A4, B) is contracted before, the probability to
contract an edge crossing (4, B) in step i isat most 2/, ;_;.

_—

 Event 8 edge contracted in step i is not crossing (4, B)

Cals %ﬁ eturns AR =P(EnE, n..NEn )
4?(2,) R(Eg,\E) - (P@gnzzv €, 16 anE,)

2. - |
ﬂPCgL(E'OQgD—()Z \ TN+l - W = 41

Algorithm Theory, WS 2019/20 Fabian Kuhn 12




UNI

Getting The Min Cut

FREIBURG

Theorem: The probability that the algorithm outputs a minimum
cutis at least 2/n(n — 1).

Proof:
2 __ n—i-2
* P(8i+1|81 Nn--N 81) =1- /n—i T n—i
e

* No edge crossing (4, B) contracted: event £ = N2 &;

(\P(g‘(l _“AZ\MZ)::f(E ) '(F(g \2) y : ﬂD(szg (1~ O 2m~5)

_MMMMM(%Z(
I e e

e

< b
“m-ny (Q) D

——

_
—

Algorithm Theory, WS 2019/20 Fabian Kuhn : 13



Randomized Min Cut Algorithm

UNI
FREIBURG

Theorem: If the contraction algorithm is repeated 0§n2 logn)

times, one of the 0(n? logn) instances returns a min. cut w.h.p.

* Probability to not get a minimum cutin ¢ - (2) - In n iterations:

1 C.(Z).lnn —clnn 1
(1 — T) <e - —
(2) 4+

e ®
Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* It remains to show that each instance can be implemented in
0(n?) time.

Algorithm Theory, WS 2019/20 Fabian Kuhn 14



Implementing Edge Contractions

Edge Contraction:
* Given: multigraph with n nodes

— assume that set of nodes is {1, ..., n}
e Goal: contract edge {u, v}
Data Structure
* We can use either adjacency lists or an adjacency matrix
* Entryinrow i and column j: #edges between nodes i and j

3 ;

 Example:
(A2
K/

Algorithm Theory, WS 2019/20 Fabian Kuhn

.

|l

O
O REFR ON
—_ OO R O
WO R R

=

|
FRE:BURG

UNI



Contracting An Edge

UNI
f

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory, WS 2019/20

1 2 3 4 5 6 7
1101103 |0]0]0
211101101 2]|0
31011010220
4131070011010
51]0(112|1]0(1)|1
61012120101
/1010010111160

13,5}

Fabian Kuhn

16



Contracting An Edge

UNI
f

FREIBURG

Example: Contract one of the edges between 3 and 5

Algorithm Theory, WS 2019/20

1 2 3 4 5 6 7
1/ol1|l0|3|0|0]|O
211l0|l1]0]1]2]0
310l@Mjojo|2|2]|0
413|0|0|0]1]0]0
slol@l2]1]0|1]1
6|l0|2]2]0|1]|0]|1
7/10l0l0l0|1|1]0

350 0|2 3|1

Fabian Kuhn

T

17



Contracting An Edge

UNI
f

FREIBURG

Example: Contract one of the edges between 3 and 5
1 2 35 4

6 7/
1701|103 \ 00
21110120 210
3510121011 31
413101110 00
0 \
6101230 ) 0|1
==/ 10010 & 110
{35010 1

Algorithm Theory, WS 2019/20 Fabian Kuhn

18



Contracting an Edge

UNI
f

FREIBURG

Claim: Given the adjacency matrix of an n-node multigraph and
an edge {u, v}, one can contract the edge {u, v} in time O (n).

* Row/column of combined node {u, v} is sum of rows/columns
of uand v

* Row/column of u can be replaced by new row/column of
combined node {u, v}

e Swap row/column of v with last row/column in order to have
the new (n — 1)-node multigraph as a contiguous
(n—1) X (n — 1) submatrix

Algorithm Theory, WS 2019/20 Fabian Kuhn 19



UNI

Finding a Random Edge

* We need to contract a uniformly random edge

* How to find a uniformly random edge in a multigraph?

— Finding a random non-zero entry (with the right probability) in an
adjacency matrix costs 0(n?).

Idea for more efficient algorithm:
* First choose a random node u

— with probability proportional to the degree (#edges) of u

* Pickarandom edge of u
— only need to look at one row = time 0(n)

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

FREIBURG



Choose a Random Node

UNI

FREIBURG

Edge Sampling:
1. Choose a node u € V with probability
degw) _degw) ) b
ZUEV deg(v) 2m \
2. Choose a uniformly random edge of u =—- o(n) Q%‘M—Q

@//
%/v

dogr L g 1

., L
WSQH’\V%Q:‘— > w ‘ 0@3“‘) 7 wn (ﬂgscvy M

Algorithm Theory, WS 2019/20 Fabian Kuhn

21



Choose a Random Node

UNI
f

FREIBURG

deg(u)
2m

* We need to choose a random node u with probability

* Keep track of the number of edges m and maintain an array with
the degrees of all the nodes

— Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;
for all nodes ue€elvlV:

deg(u)
2m—degsum

with probability

pick node u; terminate

else
degsum += deg(u)

Algorithm Theory, WS 2019/20 Fabian Kuhn 22



Randomized Min Cut Algorithm

UNI
f

FREIBURG

Theorem: If the contraction algorithm is repeated 0(n®logn)
times, one of the 0(n? logn) instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cutin 0(n*logn) time w.h.p.

* One instance consists of n — 2 edge contractions

* Each edge contraction can be carried out in time 0 (n)
— Actually: O(current #nodes)

 Time per instance of the contraction algorithm: 0(n?)

Algorithm Theory, WS 2019/20 Fabian Kuhn 23



Can We Do Better?

UNI
f

FREIBURG

« Time O(n*logn) is not very spectacular, a simple max flow
based implementation has time 0(n?).

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to be significantly faster than
the max flow solution.

Z . Jt allows to obtain strong statements about the distribution
of cuts in graphs.

Algorithm Theory, WS 2019/20 Fabian Kuhn 24



Better Randomized Algorithm

UNI
f

FREIBURG

Recall:

Consider a fixed min cut (4, B), assume (A, B) has size k

The algorithm outputs (4, B) iff none of the k edges crossing
(A, B) gets contracted.

Throughout the algorithm, the edge connectivity is at least k
and therefore each node has degree > k

Before contraction i, there aren + 1 — i nodes and thus at
least(n + 1 — i)k /2 edges
If no edge crossing (A4, B) is contracted before, the probability
to contract an edge crossing (A, B) in step i is at most

k

n+1-Dk
2

Algorithm Theory, WS 2019/20 Fabian Kuhn 25



UNI

Improving the Contraction Algorithm

FREIBURG

* For a specific min cut (4, B), if (4, B) survives the first i
contractions,

P(edge crossing (4, B) in contractioni + 1) <

n—i
* Observation: The probability only gets large for large i

* ldea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.

——

— K=

\
—_

Algorithm Theory, WS 2019/20 Fabian Kuhn 26



Safe Contraction Phase Q~—é}w

UNI
FREIBURG

Lemma: A given min cut (4, B) of an n-node graph G survives the
firstn — [”/\/E + 1} contractions, with probability > 1/,,.

Proof:
* Event &;: cut (4, B) survives contraction {
* Probability that (4, B) survives the first n — t contractions:

IR  S AUe M ol I =S b
R A T ¢ Yt)
W
><ﬁ*\>q_ >i,—\—:_L
S S 1= Lz 2
{: G /\QH U QA—«\) -

Algorithm Theory, WS 2019/20 Fabian Kuhn 27



Better Randomized Algorithm

|
FRE:BURG

UNI

Let’s simplify a bit:
* Pretend that n/\/i is an integer (for all n we will need it).

* Assume that a given min cut survives the first n — "/\/E

) —

contractions with probability > 1/,,.

contract(G, t):

* Starting with n-node graph G, performn — t edgg cqptractlons
such that the new graph has t nodes. o %

| (@) =
mincut(G):
i
1. X, = mincut (Contract(G,n/ﬁ)); N
—

2. X, := mincut (ccﬂtract(G,n/\/i));

3. return min{X, X,};
Algorithm Theory, WS 2019/20 Fabian Kuhn 28



Success Probability

UNI
f

FREIBURG

mincut(G):
1. @:z mincut (Contract(G,n/\/i));
2. X, := mincut (contract(G,n/\/E));

3. return min{X{, X5};

P(n): probability that the above algorithm returns a min cut when
applied to a graph with n nodes.

* Probability that X; is a min cut = %o?(%}
Recursion:
¢ AN _ L oMt P =
Pz~ (1- S8 =P - 7P D=

Algorithm Theory, WS 2019/20 Fabian Kuhn 29



Success Probability V() z —

Lo, v

UNI
f

FREIBURG

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least 1/log, n.

Proof (by induction on n): @

n 1 n\’
Ta: w=2 Pz g5=" vV

2

Algorithm Theory, WS 2019/20 Fabian Kuhn




Running Time

UNI
f

FREIBURG

1. X; = mincut (Contract((},n/@));

—

2. X, = mincut (contract(G,n/\/f));

S~

3. return min{Xy, X,};

Recursion:

e T(n):time to apply algorithm to n-node graphs

e Recursive calls: 2T ("/\/5)

* Number of contractions to get to % nodes: O(n)

T(n) = 27‘—%) + 0(n?),

Algorithm Theory, WS 2019/20

Fabian Kuhn

T(2) = 0(1)

= T =O(n" /@{(”‘7

31



Running Time

UNI
FREIBURG

Theorem: The running time of the recursive, randomized min cut
algorithm is O (n?logn).

Proof:

* Can be shown in the usual way, by induction on n
X - X/Z%M

* The running time is only by an O (log n)-factor slower than
the basic contraction algorithm.

Remark:

* The success probability is exponentially better!

T %A*\ﬁé WA af/\zf»
ool Hwg @((/12»&8%}

Algorithm Theory, WS 2019/20 Fabian Kuhn 32



