\\ \title{

Chapter 7

 \title{
Chapter 7

 Randomization}

Algorithm Theory WS 2019/20

Fabian Kuhn

Types of Randomized Algorithms

Las Vegas Algorithm:

- always a correct solution
- running time is a random variable
- Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

- probabilistic correctness guarantee (mostly correct)
- fixed (deterministic) running time
- Example: primality test

Minimum Cut

Reminder: Given a graph $G=(V, E)$, a cut is a partition (A, B) of V such that $V=A \cup B, A \cap B=\emptyset, A, B \neq \emptyset$

Size of the cut $(\boldsymbol{A}, \boldsymbol{B})$: \# of edges crossing the cut

- For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)
Maximum-flow based algorithm:

- Fix s, compute min s - t-cut for all $t \neq s$
- $O(m \cdot \lambda(G))=O(m n)$ per s - t cut

$$
O\left(m n^{2}\right)=O\left(n^{4}\right)
$$

- Gives an $\mathrm{O}(m n \lambda(G))=O\left(m n^{2}\right)$-algorithm

Edge Contractions

- In the following, we consider multi-graphs that can have multiple edges (but no self-loops)

- For all edges $\{u, x\}$ and $\{v, x\}$, add an edge $\{w, x\}$
- Remove self-loops created at node w

Properties of Edge Contractions

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes

Cuts:

- Assume in the contracted graph, w represents nodes $S_{w} \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $\left(S_{w}, V \backslash S_{w}\right)$

Randomized Contraction Algorithm

Algorithm:

while there are >2 nodes do
contract a uniformly random edge
return cut induced by the last two remaining nodes
(cut defined by the original node sets represented by the last 2 nodes)
Theorem: The random contraction algorithm returns a minimum cut with probability at least $1 / O\left(n^{2}\right)$.

- We will show this next.

Theorem: The random contraction algorithm can be implemented in time $O\left(n^{2}\right)$.

- There are $n-2$ contractions, each can be done in time $O(n)$.
- We will see this later.

Contractions and Cuts

Lemma: If two original nodes $u, v \in V$ are merged into the same node of the contracted graph, there is a path connecting u and v in the original graph s.t. all edges on the path are contracted.

Proof:

- Contracting an edge $\{x, y\}$ merges the node sets represented by x and y and does not change any of the other node sets.
- The claim the follows by induction on the number of edge contractions.

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity (i.e., the size of the min. cut) cannot get smaller.

Proof:

- All cuts in a (partially) contracted graph correspond to cuts of the same size in the original graph G as follows:
- For a node u of the contracted graph, let S_{u} be the set of original nodes that have been merged into u (the nodes that u represents)
- Consider a cut (A, B) of the contracted graph
- $\left(A^{\prime}, B^{\prime}\right)$ with

$$
A^{\prime}:=\bigcup_{u \in A} S_{u}, \quad B^{\prime}:=\bigcup_{v \in B} S_{v}
$$

is a cut of G.

- The edges crossing cut (A, B) are in one-to-one correspondence with the edges crossing cut $\left(A^{\prime}, B^{\prime}\right)$.

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (A, B) of the input graph G if and only if it never contracts an edge crossing (A, B).

Proof:

1. If an edge crossing (A, B) is contracted, a pair of nodes $u \in A$, $v \in V$ is merged into the same node and the algorithm outputs a cut different from (A, B).
2. If no edge of (A, B) is contracted, no two nodes $u \in A, v \in B$ end up in the same contracted node because every path connecting u and v in G contains some edge crossing (A, B)

In the end there are only 2 sets \rightarrow output is (A, B)

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 /(n(n-1)$.

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least $\mathrm{kn} / 2$ edges.

Proof:

- Min cut has size $k \Rightarrow$ all nodes have degree $\geq k$
- A node v of degree $<k$ gives a cut $(\{v\}, V \backslash\{v\})$ of size $<k$
- Number of edges $m=1 / 2 \cdot \sum_{v} \operatorname{deg}(v) \geqslant \frac{1}{2} \cdot n \cdot L$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.

Proof:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Before contraction i, there are $n+1-i$ nodes
\rightarrow and thus $\geq(n+1-i) k / 2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{\overparen{k}}{\frac{(n+1-i)(k}{2}}=\frac{2}{n+1-i}
$$

Getting The Min Cut
Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.
Proof:

- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most ${ }^{2} / n+1-i$.
- Event $\underline{\mathcal{E}_{i}}$: edge contracted in step i is not crossing (A, B)

Goal: \mathbb{P} (alg .returns $(A, B)=\mathbb{P}\left(\varepsilon_{1} \cap \varepsilon_{2} \cap \ldots \cap \varepsilon_{n-2}\right)$

$$
\begin{aligned}
&=\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{3} \mid \varepsilon_{1} \cap \varepsilon_{2}\right) \cdot \ldots \cdot \mathbb{P}\left(\varepsilon_{n-2} \mid \varepsilon_{1} n \ldots \varepsilon_{n-3}\right) \\
& \mathbb{P}\left(\varepsilon_{i} \mid \varepsilon_{1} \cap \ldots \cap \varepsilon_{i-1}\right) \geqslant 1-\frac{2}{n+1-i}=\frac{n-i-1}{n-i+1}
\end{aligned}
$$

Getting The Min Cut
Theorem: The probability that the algorithm outputs a minimum cut is at least $2 / n(n-1)$.
Proof:

- $\mathbb{P}\left(\varepsilon_{i+1} \mid \varepsilon_{1} \cap \cdots \cap \mathcal{E}_{i}\right) \geq 1-2 / n-i=\frac{n-i-2}{n-i}$
- No edge crossing (A, B) contracted: event $\mathcal{E}=\bigcap_{i=1}^{n-2} \varepsilon_{i}$

$$
\begin{aligned}
\mathbb{P}\left(\varepsilon_{1} \cap \ldots n \varepsilon_{n-2}\right) & =\mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdot \ldots \cdot \mathbb{P}\left(\varepsilon_{n-2} \mid \varepsilon_{1} n \ldots n \varepsilon_{n-3}\right) \\
& =\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdot \frac{n-6}{n-4} \cdot \cdots \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \\
& =\frac{2}{n(n-1)}=\frac{1}{\binom{n}{2}}
\end{aligned}
$$

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Proof:

$$
1+x \leq e^{x}
$$

- Probability to not get a minimum cut in $c \cdot\binom{n}{2} \cdot \ln n$ iterations:

$$
\begin{gathered}
\left(1-\frac{1}{\binom{n}{2}}\right)^{c \cdot\binom{n}{2} \cdot \ln n}<e^{-c \ln n}=\frac{1}{n^{c}} \\
1-\frac{1}{(n)}<e^{\frac{d}{(\hat{n})}}
\end{gathered}
$$

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- It remains to show that each instance can be implemented in $O\left(n^{2}\right)$ time.

Implementing Edge Contractions

Edge Contraction:

- Given: multigraph with n nodes
- assume that set of nodes is $\{1, \ldots, n\}$
- Goal: contract edge $\{u, v\}$

Data Structure

- We can use either adjacency lists or an adjacency matrix
- Entry in row i and column j : \#edges between nodes i and j
- Example:

$$
A=\left(\begin{array}{lllll}
0 & 2 & 0 & 1 & 0 \\
2 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 3 \\
0 & 0 & 1 & 3 & 0
\end{array}\right)
$$

Contracting An Edge

Example: Contract one of the edges between 3 and 5

	1	2	3	4	5	6	7
1	0	1	0	3	0	0	0
2	1	0	1	0	1	2	0
3	0	1	0	0	2	2	0
4	3	0	0	0	1	0	0
5	0	1	2	1	0	1	1
6	0	2	2	0	1	0	1
7	0	0	0	0	1	1	0
3,5\}							

Contracting An Edge

Example: Contract one of the edges between 3 and 5

Contracting An Edge

Example: Contract one of the edges between 3 and 5

Contracting an Edge

Claim: Given the adjacency matrix of an n-node multigraph and an edge $\{u, v\}$, one can contract the edge $\{u, v\}$ in time $O(n)$.

- Row/column of combined node $\{u, v\}$ is sum of rows/columns of u and v
- Row/column of u can be replaced by new row/column of combined node $\{u, v\}$
- Swap row/column of v with last row/column in order to have the new ($n-1$)-node multigraph as a contiguous $(n-1) \times(n-1)$ submatrix

Finding a Random Edge

- We need to contract a uniformly random edge
- How to find a uniformly random edge in a multigraph?
- Finding a random non-zero entry (with the right probability) in an adjacency matrix costs $O\left(n^{2}\right)$.

Idea for more efficient algorithm:

- First choose a random node u
- with probability proportional to the degree (\#edges) of u
- Pick a random edge of u
- only need to look at one row \rightarrow time $O(n)$

Choose a Random Node
Edge Sampling:

1. Choose a node $u \in V$ with probability

$$
\frac{\operatorname{deg}(u)}{\sum_{v \in V} \operatorname{deg}(v)}=\frac{\operatorname{deg}(u)}{2 m} \leftrightarrows O(u) \text { time }
$$

2. Choose a uniformly random edge of $u \approx O(u)$ fine

$$
\mathbb{P}(\text { getting } C)=\frac{\operatorname{deg}(n)}{2 m} \cdot \frac{1}{\operatorname{deg}(n)}+\frac{\operatorname{deg}(v)}{2 m} \cdot \frac{1}{\operatorname{leg}(v)}=\frac{1}{m}
$$

Choose a Random Node

- We need to choose a random node u with probability $\frac{\operatorname{deg}(u)}{2 m}$
- Keep track of the number of edges m and maintain an array with the degrees of all the nodes
- Can be done with essentially no extra cost when doing edge contractions

Choose a random node:

```
degsum = 0;
for all nodes u\inV:
    with probability }\frac{\operatorname{deg}(u)}{2m-\operatorname{degsum}}\mathrm{ :
    pick node u; terminate
    else
    degsum += deg(u)
```


Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated $O\left(n^{2} \log n\right)$ times, one of the $O\left(n^{2} \log n\right)$ instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum cut in $O\left(n^{4} \log n\right)$ time w.h.p.

- One instance consists of $n-2$ edge contractions
- Each edge contraction can be carried out in time $O(n)$
- Actually: O (current \#nodes)
- Time per instance of the contraction algorithm: $O\left(n^{2}\right)$

Can We Do Better?

- Time $O\left(n^{4} \log n\right)$ is not very spectacular, a simple max flow based implementation has time $O\left(n^{4}\right)$.

However, we will see that the contraction algorithm is nevertheless very interesting because:

1. The algorithm can be improved to be significantly faster than the max flow solution. of cuts in graphs.

Better Randomized Algorithm

Recall:

- Consider a fixed min cut (A, B), assume (A, B) has size k
- The algorithm outputs (A, B) iff none of the k edges crossing (A, B) gets contracted.
- Throughout the algorithm, the edge connectivity is at least k and therefore each node has degree $\geq k$
- Before contraction i, there are $n+1-i$ nodes and thus at least $(n+1-i) k / 2$ edges
- If no edge crossing (A, B) is contracted before, the probability to contract an edge crossing (A, B) in step i is at most

$$
\frac{k}{\frac{(n+1-i) k}{2}}=\frac{2}{n+1-i}
$$

Improving the Contraction Algorithm

- For a specific min cut (A, B), if (A, B) survives the first i contractions,

$$
\mathbb{P}(\text { edge } \operatorname{crossing}(A, B) \text { in contraction } i+1) \leq \frac{2}{n-i}
$$

- Observation: The probability only gets large for large i
- Idea: The early steps are much safer than the late steps. Maybe we can repeat the late steps more often than the early ones.

Safe Contraction Phase

$$
\left(1-\frac{1}{\sqrt{2}}\right) n
$$

Lemma: A given min cut (A, B) of an n-node graph G survives the first $n-\lceil n / \sqrt{2}+1\rceil$ contractions, with probability $>1 / 2$.

Proof:

- Event \mathcal{E}_{i} : cut (A, B) survives contraction i
- Probability that (A, B) survives the first $n-t$ contractions:

$$
\begin{aligned}
& \geqslant \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \cdots \cdot \frac{t+1}{t+3} \cdot \frac{t}{t+2} \cdot \frac{t-1}{t+1}=\frac{t(t-1)}{n(n-1)} \\
& t=\left[\frac{n}{\sqrt{2}}+1\right] \geqslant \frac{n}{\sqrt{2}}+1
\end{aligned}
$$

Better Randomized Algorithm

Let's simplify a bit:

- Pretend that $n / \sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given \min cut survives the first $n-n / \sqrt{2}$ contractions with probability $\geq 1 / 2$.

contract $(\boldsymbol{G}, \boldsymbol{t})$:

- Starting with n-node graph G, perform $n-t$ edge contractions such that the new graph has t nodes.
 $\operatorname{mincut}(G)$:

1. $\quad X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

Success Probability

mincut (G) :

1. $\left.X_{1}\right):=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;
$\boldsymbol{P}(\boldsymbol{n})$: probability that the above algorithm returns a min cut when applied to a graph with n nodes.

- Probability that X_{1} is a min cut $\geq \frac{1}{2} \cdot P\left(\frac{n}{\sqrt{2}}\right)$ Recursion:
$P(n) \geqslant 1-\left(1-\frac{1}{2} P\left(\frac{n}{\sqrt{2}}\right)\right)^{2}=P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} P\left(\frac{n}{\sqrt{2}}\right)^{2}, \quad P(2)=1$

Success Probability

$$
P(u) \geqslant \frac{1}{\log _{2} u}
$$

Theorem: The recursive randomized min cut algorithm returns a minimum cut with probability at least $1 / \log _{2} n$.
Proof (by induction on n):

$$
P(n)=P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} \cdot P\left(\frac{n}{\sqrt{2}}\right)^{2}, \quad P(2)=1
$$

Base: $n=2 \quad P(2) \geqslant \frac{1}{\log _{2} 2}=1$
Ind step: $P(n) \geqslant P\left(\frac{n}{\sqrt{2}}\right)-\frac{1}{4} P\left(\frac{n}{\sqrt{2}}\right)^{2}$

$$
\begin{aligned}
& \left.(n>2) \quad(1++1) \frac{1}{\geqslant}-\frac{1}{4(\log (n / 12)}(1 / 2)\right)^{2}=\frac{1}{\log (1 / \sqrt{2})}\left(1-\frac{1}{4 \log (1 / \sqrt{2}))}\right. \\
& \sum \frac{1}{\log n-\frac{1}{2}}\left(1-\frac{1}{4 \log n-2}\right)=\frac{1}{\log c \frac{1}{2}} \frac{4 \log n-3}{4 \log n-2}=\frac{4 \log n-3}{4 \log ^{2} n-4 \log n+1}=\frac{1}{-3 \log n}
\end{aligned}
$$

Running Time

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

Recursion:

- $T(n)$: time to apply algorithm to n-node graphs
- Recursive calls: $2 T(n / \sqrt{2})$
- Number of contractions to get to ${ }^{n} / \sqrt{2}$ nodes: $O(n)$

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{\sqrt{2}}\right)+O\left(n^{2}\right), \\
& T(2)=O(1) \\
& T(n)=O\left(n^{2} \log n\right)
\end{aligned}
$$

Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O\left(n^{2} \log n\right)$.

Proof:

- Can be shown in the usual way, by induction on n

Remark:

$$
\left(1-\frac{1}{\log n}\right)^{x}<e^{-x / \log n}
$$

- The running time is only by an $O(\log n)$-factor slower than the basic contraction algorithm.
- The success probability is exponentially better!

To get a win out sip. \Rightarrow need to repeat $\theta\left(\log ^{2} n\right)$ dines overall fine: $O\left(n^{2} \cdot \log ^{3} n\right)$

