
Chapter 7

Randomization

Algorithm Theory
WS 2019/20

Fabian Kuhn

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Types of Randomized Algorithms

Las Vegas Algorithm:

• always a correct solution

• running time is a random variable

• Example: randomized quicksort, contention resolution

Monte Carlo Algorithm:

• probabilistic correctness guarantee (mostly correct)

• fixed (deterministic) running time

• Example: primality test

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Minimum Cut

Reminder: Given a graph 𝐺 = 𝑉, 𝐸 , a cut is a partition (𝐴, 𝐵)
of 𝑉 such that 𝑉 = 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵 = ∅, 𝐴, 𝐵 ≠ ∅

Size of the cut (𝑨, 𝑩): # of edges crossing the cut

• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size 𝜆(𝐺))

Maximum-flow based algorithm:

• Fix 𝑠, compute min 𝑠-𝑡-cut for all 𝑡 ≠ 𝑠

• 𝑂 𝑚 ⋅ 𝜆 𝐺 = 𝑂(𝑚𝑛) per 𝑠-𝑡 cut

• Gives an O 𝑚𝑛𝜆 𝐺 = 𝑂(𝑚𝑛2)-algorithm

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Edge Contractions

• In the following, we consider multi-graphs that can have
multiple edges (but no self-loops)

Contracting edge {𝒖, 𝒗}:

• Replace nodes 𝑢, 𝑣 by new node 𝑤

• For all edges {𝑢, 𝑥} and {𝑣, 𝑥}, add an edge {𝑤, 𝑥}

• Remove self-loops created at node 𝑤

not okok

𝒂

𝒖

𝒗

𝒄

𝒃

𝒂
𝒘 𝒄

𝒃

contract {𝒖, 𝒗}

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

Properties of Edge Contractions

Nodes:

• After contracting {𝑢, 𝑣}, the new node represents 𝑢 and 𝑣

• After a series of contractions, each node represents a subset of
the original nodes

Cuts:

• Assume in the contracted graph, 𝑤 represents nodes 𝑆𝑤 ⊂ 𝑉

• The edges of a node 𝑤 in a contracted graph are in a one-to-one
correspondence with the edges crossing the cut 𝑆𝑤 , 𝑉 ∖ 𝑆𝑤

𝟏 𝟐

𝟑

𝟒 𝟓

𝟔

𝟑

𝟒 𝟓

𝟔

(𝟏, 𝟐) (𝟏, 𝟐)

𝟑

𝟓
(𝟒, 𝟔)

(𝟏, 𝟐)

(𝟒, 𝟓, 𝟔)

𝟑

(𝟏, 𝟐)

(𝟑, 𝟒, 𝟓, 𝟔)

{𝟏, 𝟐} {𝟒, 𝟔} {𝟓, (𝟒, 𝟔)} {𝟑, (𝟒, 𝟓, 𝟔)}

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Randomized Contraction Algorithm

Algorithm:

while there are > 2 nodes do

contract a uniformly random edge

return cut induced by the last two remaining nodes

(cut defined by the original node sets represented by the last 2 nodes)

Theorem: The random contraction algorithm returns a minimum
cut with probability at least Τ1 𝑂(𝑛2).

• We will show this next.

Theorem: The random contraction algorithm can be implemented
in time 𝑂(𝑛2).

• There are 𝑛 − 2 contractions, each can be done in time 𝑂(𝑛).

• We will see this later.

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Contractions and Cuts

Lemma: If two original nodes 𝑢, 𝑣 ∈ 𝑉 are merged into the same
node of the contracted graph, there is a path connecting 𝑢 and 𝑣
in the original graph s.t. all edges on the path are contracted.

Proof:

• Contracting an edge {𝑥, 𝑦} merges the node sets represented by
𝑥 and 𝑦 and does not change any of the other node sets.

• The claim the follows by induction on the number of edge
contractions.

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Contractions and Cuts

Lemma: During the contraction algorithm, the edge connectivity
(i.e., the size of the min. cut) cannot get smaller.

Proof:

• All cuts in a (partially) contracted graph correspond to cuts of
the same size in the original graph 𝐺 as follows:
– For a node 𝑢 of the contracted graph, let 𝑆𝑢 be the set of original nodes

that have been merged into 𝑢 (the nodes that 𝑢 represents)

– Consider a cut (𝐴, 𝐵) of the contracted graph

– 𝐴′, 𝐵′ with

𝐴′ ≔ራ

𝑢∈𝐴

𝑆𝑢 , 𝐵′ ≔ራ

𝑣∈𝐵

𝑆𝑣

is a cut of 𝐺.

– The edges crossing cut (𝐴, 𝐵) are in one-to-one correspondence with the
edges crossing cut (𝐴′, 𝐵′).

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Contraction and Cuts

Lemma: The contraction algorithm outputs a cut (𝐴, 𝐵) of the input
graph 𝐺 if and only if it never contracts an edge crossing (𝐴, 𝐵).

Proof:

1. If an edge crossing (𝐴, 𝐵) is contracted, a pair of nodes 𝑢 ∈ 𝐴,
𝑣 ∈ 𝑉 is merged into the same node and the algorithm outputs
a cut different from (𝐴, 𝐵).

2. If no edge of (𝐴, 𝐵) is contracted, no two nodes 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵
end up in the same contracted node because every path
connecting 𝑢 and 𝑣 in 𝐺 contains some edge crossing 𝐴, 𝐵

In the end there are only 2 sets output is (𝐴, 𝐵)

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph 𝐺 (no self-loops) is 𝑘,
𝐺 has at least Τ𝑘𝑛 2 edges.

Proof:

• Min cut has size 𝑘⟹ all nodes have degree ≥ 𝑘
– A node 𝑣 of degree < 𝑘 gives a cut 𝑣 , 𝑉 ∖ 𝑣 of size < 𝑘

• Number of edges 𝑚 = Τ1 2 ⋅ σ𝑣 deg(𝑣)

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘

• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing
(𝐴, 𝐵) gets contracted.

• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes
 and thus ≥ Τ𝑛 + 1 − 𝑖 𝑘 2 edges

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most

𝑘

𝑛 + 1 − 𝑖 𝑘
2

=
2

𝑛 + 1 − 𝑖
.

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability to
contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most Τ2 𝑛+1−𝑖.

• Event ℰ𝑖: edge contracted in step 𝑖 is not crossing (𝐴, 𝐵)

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum
cut is at least Τ2 𝑛(𝑛 − 1).

Proof:

• ℙ ℰ𝑖+1|ℰ1 ∩⋯∩ ℰ𝑖 ≥ 1 − Τ2 𝑛−𝑖 =
𝑛−𝑖−2

𝑛−𝑖

• No edge crossing (𝐴, 𝐵) contracted: event ℰ = 𝑖=1ځ
𝑛−2ℰ𝑖

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Proof:

• Probability to not get a minimum cut in 𝑐 ⋅
𝑛
2

⋅ ln 𝑛 iterations:

1 −
1
𝑛
2

𝑐⋅
𝑛
2
⋅ln 𝑛

< 𝑒−𝑐 ln 𝑛 =
1

𝑛𝑐

Corollary: The contraction algorithm allows to compute a minimum
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• It remains to show that each instance can be implemented in
𝑂 𝑛2 time.

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

Implementing Edge Contractions

Edge Contraction:

• Given: multigraph with 𝑛 nodes
– assume that set of nodes is {1, … , 𝑛}

• Goal: contract edge 𝑢, 𝑣

Data Structure

• We can use either adjacency lists or an adjacency matrix

• Entry in row 𝑖 and column 𝑗: #edges between nodes 𝑖 and 𝑗

• Example:

𝟏

𝟒

𝟐

𝟓

𝟑
𝐴 =

0 2 0
2 0 1
0 1 0

1 0
1 0
0 1

1 1 0
0 0 1

0 3
3 0

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 3 4 5 6 7

1 0 1 0 3 0 0 0

2 1 0 1 0 1 2 0

3 0 1 0 0 2 2 0

4 3 0 0 0 1 0 0

5 0 1 2 1 0 1 1

6 0 2 2 0 1 0 1

7 0 0 0 0 1 1 0

1

2

4

3

5

7

6

{3,5}

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 3 4 5 6 7

1 0 1 0 3 0 0 0

2 1 0 1 0 1 2 0

3 0 1 0 0 2 2 0

4 3 0 0 0 1 0 0

5 0 1 2 1 0 1 1

6 0 2 2 0 1 0 1

7 0 0 0 0 1 1 0

1

2

4

335

7

6

{3,5} 0 2 1 3 1

Algorithm Theory, WS 2019/20 Fabian Kuhn 18

Contracting An Edge

Example: Contract one of the edges between 3 and 5

1 2 35 4 6 7

1 0 1 0 3 0 0

2 1 0 2 0 2 0

35 0 2 0 1 3 1

4 3 0 1 0 0 0

6 0 2 3 0 0 1

7 0 0 1 0 1 0

1

2

4

335

7

6

{3,5} 0 2 1 3 1

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

Contracting an Edge

Claim: Given the adjacency matrix of an 𝑛-node multigraph and
an edge {𝑢, 𝑣}, one can contract the edge 𝑢, 𝑣 in time 𝑂(𝑛).

• Row/column of combined node {𝑢, 𝑣} is sum of rows/columns
of 𝑢 and 𝑣

• Row/column of 𝑢 can be replaced by new row/column of
combined node {𝑢, 𝑣}

• Swap row/column of 𝑣 with last row/column in order to have
the new (𝑛 − 1)-node multigraph as a contiguous
𝑛 − 1 × (𝑛 − 1) submatrix

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

Finding a Random Edge

• We need to contract a uniformly random edge

• How to find a uniformly random edge in a multigraph?
– Finding a random non-zero entry (with the right probability) in an

adjacency matrix costs 𝑂 𝑛2 .

Idea for more efficient algorithm:

• First choose a random node 𝑢
– with probability proportional to the degree (#edges) of 𝑢

• Pick a random edge of 𝑢
– only need to look at one row time 𝑂 𝑛

Algorithm Theory, WS 2019/20 Fabian Kuhn 21

Choose a Random Node

Edge Sampling:

1. Choose a node 𝑢 ∈ 𝑉 with probability

deg(𝑢)

σ𝑣∈𝑉 deg(𝑣)
=
deg(𝑢)

2𝑚

2. Choose a uniformly random edge of 𝑢

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

Choose a Random Node

• We need to choose a random node 𝑢 with probability
deg 𝑢

2𝑚

• Keep track of the number of edges 𝑚 and maintain an array with
the degrees of all the nodes
– Can be done with essentially no extra cost when doing edge contractions

Choose a random node:
degsum = 0;

for all nodes 𝑢 ∈ 𝑉:

with probability
deg 𝑢

2𝑚−degsum
:

pick node 𝑢; terminate

else

degsum += deg 𝑢

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Randomized Min Cut Algorithm

Theorem: If the contraction algorithm is repeated 𝑂(𝑛2 log 𝑛)
times, one of the 𝑂 𝑛2 log 𝑛 instances returns a min. cut w.h.p.

Corollary: The contraction algorithm allows to compute a minimum
cut in 𝑂 𝑛4 log 𝑛 time w.h.p.

• One instance consists of 𝑛 − 2 edge contractions

• Each edge contraction can be carried out in time 𝑂(𝑛)
– Actually: 𝑂 current #nodes

• Time per instance of the contraction algorithm: 𝑂 𝑛2

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

Can We Do Better?

• Time 𝑂(𝑛4 log 𝑛) is not very spectacular, a simple max flow
based implementation has time 𝑂 𝑛4 .

However, we will see that the contraction algorithm is
nevertheless very interesting because:

1. The algorithm can be improved to be significantly faster than
the max flow solution.

1. It allows to obtain strong statements about the distribution
of cuts in graphs.

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

Better Randomized Algorithm

Recall:

• Consider a fixed min cut (𝐴, 𝐵), assume (𝐴, 𝐵) has size 𝑘

• The algorithm outputs (𝐴, 𝐵) iff none of the 𝑘 edges crossing
(𝐴, 𝐵) gets contracted.

• Throughout the algorithm, the edge connectivity is at least 𝑘
and therefore each node has degree ≥ 𝑘

• Before contraction 𝑖, there are 𝑛 + 1 − 𝑖 nodes and thus at
least Τ𝑛 + 1 − 𝑖 𝑘 2 edges

• If no edge crossing (𝐴, 𝐵) is contracted before, the probability
to contract an edge crossing (𝐴, 𝐵) in step 𝑖 is at most

𝑘

𝑛 + 1 − 𝑖 𝑘
2

=
2

𝑛 + 1 − 𝑖
.

Algorithm Theory, WS 2019/20 Fabian Kuhn 26

Improving the Contraction Algorithm

• For a specific min cut (𝐴, 𝐵), if (𝐴, 𝐵) survives the first 𝑖
contractions,

ℙ edge crossing 𝐴, 𝐵 in contraction 𝑖 + 1 ≤
2

𝑛 − 𝑖
.

• Observation: The probability only gets large for large 𝑖

• Idea: The early steps are much safer than the late steps.

Maybe we can repeat the late steps more often than the early
ones.

Algorithm Theory, WS 2019/20 Fabian Kuhn 27

Safe Contraction Phase

Lemma: A given min cut (𝐴, 𝐵) of an 𝑛-node graph 𝐺 survives the

first 𝑛 − ൗ
𝑛

2
+ 1 contractions, with probability > Τ1 2.

Proof:

• Event ℰ𝑖: cut (𝐴, 𝐵) survives contraction 𝑖

• Probability that (𝐴, 𝐵) survives the first 𝑛 − 𝑡 contractions:

Algorithm Theory, WS 2019/20 Fabian Kuhn 28

Better Randomized Algorithm

Let’s simplify a bit:

• Pretend that 𝑛/ 2 is an integer (for all 𝑛 we will need it).

• Assume that a given min cut survives the first 𝑛 − ൗ
𝑛

2

contractions with probability ≥ Τ1 2.

𝐜𝐨𝐧𝐭𝐫𝐚𝐜𝐭(𝑮, 𝒕):

• Starting with 𝑛-node graph 𝐺, perform 𝑛 − 𝑡 edge contractions
such that the new graph has 𝑡 nodes.

𝐦𝐢𝐧𝐜𝐮𝐭(𝑮):

1. 𝑋1 ≔ mincut contract 𝐺, Τ𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, Τ𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

Algorithm Theory, WS 2019/20 Fabian Kuhn 29

Success Probability

𝐦𝐢𝐧𝐜𝐮𝐭(𝑮):

1. 𝑋1 ≔ mincut contract 𝐺, Τ𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, Τ𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

𝑷(𝒏): probability that the above algorithm returns a min cut when
applied to a graph with 𝑛 nodes.

• Probability that 𝑋1 is a min cut ≥

Recursion:

Algorithm Theory, WS 2019/20 Fabian Kuhn 30

Success Probability

Theorem: The recursive randomized min cut algorithm returns a
minimum cut with probability at least Τ1 log2 𝑛.

Proof (by induction on 𝑛):

𝑃 𝑛 = 𝑃
𝑛

2
−
1

4
⋅ 𝑃

𝑛

2

2

, 𝑃 2 = 1

Algorithm Theory, WS 2019/20 Fabian Kuhn 31

Running Time

1. 𝑋1 ≔ mincut contract 𝐺, Τ𝑛 2 ;

2. 𝑋2 ≔ mincut contract 𝐺, Τ𝑛 2 ;

3. return min 𝑋1, 𝑋2 ;

Recursion:

• 𝑇(𝑛): time to apply algorithm to 𝑛-node graphs

• Recursive calls: 2𝑇 ൗ
𝑛

2

• Number of contractions to get to ൗ
𝑛

2
nodes: 𝑂 𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛2 , 𝑇 2 = 𝑂(1)

Algorithm Theory, WS 2019/20 Fabian Kuhn 32

Running Time

Theorem: The running time of the recursive, randomized min cut
algorithm is 𝑂(𝑛2 log 𝑛).

Proof:

• Can be shown in the usual way, by induction on 𝑛

Remark:

• The running time is only by an 𝑂(log 𝑛)-factor slower than
the basic contraction algorithm.

• The success probability is exponentially better!

