\\ \title{

## Chapter 7

<br> \title{
## Chapter 7

 <br> Randomization}


## Algorithm Theory WS 2019/20

Fabian Kuhn

## Minimum Cut - Randomized Contraction Alg.

Reminder: Given a graph $G=(V, E)$, a cut is a partition $(A, B)$ of $V$ such that $V=A \cup B, A \cap B=\emptyset, A, B \neq \emptyset$

Size of the cut $(\boldsymbol{A}, \boldsymbol{B})$ : \# of edges crossing the cut

- For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\underline{\lambda(G)}$ )
Basic randomized contraction algorithm:
while there are $>2$ nodes do contract a uniformly random edge
return cut induced by the last two remaining nodes
(cut defined by the original node sets represented by the last 2 nodes)

## Edge Contractions

## Nodes:

- After contracting $\{u, v\}$, the new node represents $u$ and $v$
- After a series of contractions, each node represents a subset of the original nodes



## Cuts:

- Assume in the contracted graph, $w$ represents nodes $S_{w} \subset V$
- The edges of a node $w$ in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $\left(S_{w}, V \backslash S_{w}\right)$


## Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least $2 /(n(n-1)$.
$q_{(A, B)}$
To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph $G$ (no self-loops) is $k$, $G$ has at least kn/2 edges.

## Proof:

- Min cut has size $k \Longrightarrow$ all nodes have degree $\geq k$
- A node $v$ of degree $<k$ gives a cut $(\{v\}, V \backslash\{v\})$ of size $<k$
- Number of edges $m=1 / 2 \cdot \sum_{v} \operatorname{deg}(v)$


## Better Randomized Algorithm

## Let's simplify a bit:

- Pretend that $n / \sqrt{2}$ is an integer (for all $n$ we will need it).
- Assume that a given min cut survives the first $n-n / \sqrt{2}$ contractions with probability $\geq 1 / 2$.
contract $(\boldsymbol{G}, \boldsymbol{t})$ :
- Starting with $n$-node graph $G$, perform $n-t$ edge contractions such that the new graph has $t$ nodes.


## mincut( $G$ ):

1. $X_{1}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
2. $X_{2}:=\operatorname{mincut}(\operatorname{contract}(G, n / \sqrt{2}))$;
3. return $\min \left\{X_{1}, X_{2}\right\}$;

## Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O\left(n^{2} \log n\right)$.

## Proof:

- Can be shown in the usual way, by induction on $n$


## Remark:

- The running time is only by an $O(\log n)$-factor slower than the basic contraction algorithm.
- The success probability is exponentially better!

Number of Minimum Cuts

- Given a graph $G$, how many minimum cuts can there be?
- Or alternatively: If $G$ has edge connectivity $k \geq 1$, how many ways are there to remove $k$ edges to disconnect $G$ ?
- Note that the total number of cuts is large.
$n$ nodes cut: partition of the nodes into 2 uou-empty parts
how many cuts are there?

$$
2^{n-1}-1
$$

$$
\begin{array}{ll}
(A, V, A) & (\phi, V) \\
(V, A, A) & (V, \phi)
\end{array}
$$

## Number of Minimum Cuts

Example: Ring with $n$ nodes


- Minimum cut size: 2
- Every two edges induce a min cut
- Number of edge pairs:
- Are there graphs with more min cuts?

Number of Min Cuts $\mathbb{P}(A \cup B)=P(A)+\mathbb{P}(B)-P(A \cap B)$
Theorem: The number of minimum cuts of a graph is at most $\underline{\binom{n}{2}}$. Proof:

- Assume there are $s$ min cuts
- For $i \in\{1, \ldots, s\}$, define event $\mathcal{C}_{i}$ :

$$
\mathcal{C}_{i}:=\{\overline{\text { basic contraction algorithm returns min cut } i\}}
$$

- We know that for $i \in\{1, \ldots, s\}: \mathbb{P}\left(\underline{\underline{\left(\mathcal{C}_{i}\right)}} \geq 1 /\binom{n}{2}=\frac{2}{n(u-1)}\right.$
- Events $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ are disjoint:

$$
1 \geqslant \mathbb{P}\left(\bigcup_{\left.\underline{\bigcup_{i=1}^{s}} \mathcal{c}_{i}\right)}\right)=\underline{\underline{\sum_{i=1}^{s}} \mathbb{P}\left(\mathcal{c}_{i}\right)} \geq \underline{\left.\underline{s} \begin{array}{l}
n \\
2
\end{array}\right)}
$$

$$
\begin{gathered}
\frac{s}{\binom{4}{2}} \leq 1 \\
S \\
s \leq\binom{ n}{2}
\end{gathered}
$$

## Counting Larger Cuts

- In the following, assume that min cut has size $\underline{\lambda}=\lambda(G)$
- How many cuts of size $\leq \underline{k=\alpha \cdot \lambda}$ can a graph have?
- Consider a specific cut $(\underline{A, B})$ of size $\leq \underline{k}$
- As before, during the contraction algorithm:
- min cut size $\geq \lambda$
- total number of edges $\lambda \cdot \#$ nodes $/ 2$
- cut $(A, B)$ remains as long as none of its edges gets contracted

$$
6 n-(i-1)=n-i+1
$$

- Prob. that an edge crossing $(A, B)$ is chosen in $\underline{i}^{\text {th }}$ contraction

$$
\leq \frac{k}{\# \text { edges }} \leq \frac{2 k}{\lambda \cdot \# \text { nodes }}=\frac{2 \alpha}{n-i+1}
$$

For simplicity, in the following, assume that $2 \alpha$ is an integer

Counting Larger Cuts $1-\pi\left(\varepsilon_{i} \mid \varepsilon_{n-n-1} \varepsilon_{i-1}\right) \leqslant \frac{2 \alpha}{n-i+1}$
Lemma: If $2 \alpha \in \mathbb{N}$, the probability that cut $(A, B)$ of size $\underline{\alpha \cdot \lambda}$ survives the first $n-2 \alpha$ edge contractions is at least

$$
\frac{1}{\binom{n}{2 \alpha}}=\frac{(2 \alpha)!}{n(n-1) \cdot \ldots \cdot(n-2 \alpha+1)} \geq \frac{2^{2 \alpha-1}}{n^{2 \alpha}} .
$$

Proof:

- As before, event $\underline{\varepsilon}_{i}$ : cut $(A, B)$ survives contraction $\underline{i}$

$$
\begin{aligned}
& \mathbb{P}\left(\varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{2} \mid \varepsilon_{1}\right) \cdot \mathbb{P}\left(\varepsilon_{3} \mid \varepsilon_{1} \cap \varepsilon_{2}\right) \cdots \\
\geq & \frac{n-2_{\alpha}}{n} \cdot \frac{n-2_{\alpha-1}}{n-1} \cdot \frac{n-22_{x}-2}{n-2} \cdot \cdots \cdot \frac{2}{2 \alpha+2} \cdot \frac{1}{2 \alpha+1} \\
= & \frac{1 \cdot 2 \cdot \ldots \cdot 2_{\alpha}}{n(n-1) \cdots(n-2 \alpha+1)}=\frac{(2 \alpha)!}{n(n-1) \ldots(n-2 \alpha+1)}=\frac{1}{\left(\begin{array}{c}
n \\
2 \alpha)
\end{array}\right.}
\end{aligned}
$$

Number of Cuts
Theorem: If $2 \alpha \in \mathbb{N}$, the number of edge cuts of size at most $\alpha$. $\lambda(G)$ in an $n$-node graph $G$ is at most $\underline{n}^{2 \alpha}$.
Proof: $\quad$ of site $\leqslant \alpha \cdot \lambda$
$\mathbb{T}($ cut $(A, B)$ survives $n-2 \alpha$ edge conte. $) \geqslant \frac{2^{2 \alpha-1}}{n^{2 \alpha}}$

$$
2 \times \text { nodes } \# \text { cats } \leq 2^{2 x-1}
$$

return a random remaining cut

$$
\begin{aligned}
\mathbb{P}(\text { return }(A, B)) & =\frac{2^{2 \alpha-1}}{n^{2 \alpha}} \cdot \frac{1}{\text { \#rem.cuts }} \\
& =\frac{1}{n^{2 \alpha}}
\end{aligned}
$$

$$
\Longrightarrow \leq n^{2 \alpha} \text { cuts of site } \leq \alpha \cdot \lambda
$$

Remark: The bound also holds for general $\alpha \geq 1$.

## Resilience To Edge Failures

- Consider a network (a graph) $G$ with $n$ nodes
- Assume that each link (edge) of $G$ fails independently with probability $\underline{p}$
- How large can $p$ be such that the remaining graph is still connected with high probability or with probability $1-\varepsilon$ ?


## Maintaining Connectivity

- A graph $G=(V, E)$ is connected jiff every edge cut $(A, B)$ has size at least 1 .

- We need to make sure that every cut keeps at least 1 edge

Resilience to Edge Failures

- Consider an edge cut $(A, B)$ of size $k=\underline{\alpha \cdot \lambda(G)}$
- Assume that each edge fails with probability $p \leq 1-\frac{i \cdot \overline{\ln \bar{n}}}{\lambda(G), '}$
- Hence each edge survives with probability $\underline{q} \geq \frac{c \cdot \ln n}{\lambda(G)}$
- Probability that no edge crossing $(A, B)$ survives

$$
\begin{aligned}
& p^{k}=p^{\alpha \lambda} \leqslant\left(1-\frac{c \ln n}{\lambda}\right)^{\alpha \lambda} \leqslant e^{-\frac{c \ln n}{\lambda} \cdot \alpha \lambda}=n^{-c \alpha} \\
& 1+x \leqslant e^{x}
\end{aligned}
$$

Maintaining All Cuts of a Certain Size

- The number of cuts of size $\underline{k}=\underline{\alpha \lambda}(G)$ is at most $\underline{n}^{2 \alpha}$.

Claim: If each edge survives with probability $q \geq \frac{c \cdot \ln (n)}{\lambda(G)}$, with probability at least $1-\frac{n^{(2-c) \alpha}}{n}$, for a given $k=\alpha \frac{\lambda(G)}{\lambda(G), \text { at }}$ least one edge of each cut of size $k$ survives.
number cats of sine $k$ from $1, \ldots, t \leq n^{2 x}$
for $i \in\{1, \ldots, t\}: B_{i}:$ no edge of cut $i$ survives

$$
\begin{aligned}
& \mathbb{P}\left(B_{i}\right) \leq n^{-\alpha \alpha} \\
& \mathbb{T}\left(B_{1} \cup \ldots \cup B_{t}\right) \leq \sum_{\text {union bound }}^{t} \mathbb{P}\left(B_{i}\right) \leq t \cdot n^{-\alpha \alpha} \\
& \leq n^{(2-c) \alpha}
\end{aligned}
$$

Maintaining Connectivity $\delta(q \cdot \lambda)$
Theorem: If each edge of a graph $G$ independently survives with probability at least $\frac{(\$+4) \cdot \ln n}{\lambda(G)}$, the remaining graph is connected with probability at least $1-\frac{1}{n^{d}}$.
$A_{k}$; some cut of site $k$ does not survive last slide: $\left.\mathbb{P}\left(A_{k}\right) \leq n^{(2-c) \alpha} \leq n^{2-c}\left(\forall k_{2}\right)\right)$

$$
\begin{gathered}
\frac{\mathbb{P}(\text { some cat does nod survive })}{\text { union bond }}=\mathbb{P}\left(A_{\lambda} \cup A_{\lambda+1} \cup \ldots \cup A_{n_{4}^{2}}\right) \\
\leq \mathbb{P}\left(A_{\lambda}\right)+\mathbb{P}\left(A_{\lambda+1}\right)+\ldots+\mathbb{P}\left(A_{n^{2} / 4}\right) \\
\leqslant \frac{n^{2}}{4} \cdot n^{2-c} \leq n^{4-c}=\left(1-\frac{1}{\lambda}\right)^{\lambda} \\
c=d+4
\end{gathered}
$$

