

Chapter 7 Randomization

Algorithm Theory WS 2019/20

Fabian Kuhn

Minimum Cut – Randomized Contraction Alg.

Reminder: Given a graph G = (V, E), a cut is a partition (A, B) of V such that $V = A \cup B$, $A \cap B = \emptyset$, $A, B \neq \emptyset$

Size of the cut (*A*, *B*): # of edges crossing the cut

• For weighted graphs, total edge weight crossing the cut

Goal: Find a cut of minimal size (i.e., of size $\lambda(G)$)

Basic randomized contraction algorithm:

while there are > 2 nodes do
 contract a uniformly random edge
return cut induced by the last two remaining nodes
 (cut defined by the original node sets represented by the last 2 nodes)

Edge Contractions

FREIBURG

Nodes:

- After contracting $\{u, v\}$, the new node represents u and v
- After a series of contractions, each node represents a subset of the original nodes_

Cuts:

- Assume in the contracted graph, w represents nodes $S_w \subset V$
- The edges of a node w in a contracted graph are in a one-to-one correspondence with the edges crossing the cut $(S_w, V \setminus S_w)$

Getting The Min Cut

Theorem: The probability that the algorithm outputs a minimum cut is at least 2/(n(n-1)).

To prove the theorem, we need the following claim:

Claim: If the minimum cut size of a multigraph G (no self-loops) is k, G has at least kn/2 edges.

Proof:

- Min cut has size $k \Longrightarrow$ all nodes have degree $\ge k$
 - A node v of degree < k gives a cut $(\{v\}, V \setminus \{v\})$ of size < k
- Number of edges $m = 1/2 \cdot \sum_{v} \deg(v)$

Let's simplify a bit:

- Pretend that $n/\sqrt{2}$ is an integer (for all n we will need it).
- Assume that a given min cut survives the first $n n/\sqrt{2}$ contractions with probability $\geq 1/2$.

contract(G, t):

 Starting with n-node graph G, perform n - t edge contractions such that the new graph has t nodes.

mincut(G):

1.
$$X_1 \coloneqq \operatorname{mincut}\left(\operatorname{contract}\left(G, n/\sqrt{2}\right)\right);$$

- 2. $X_2 \coloneqq \operatorname{mincut}\left(\operatorname{contract}(G, n/\sqrt{2})\right);$
- 3. **return** $\min\{X_1, X_2\};$

Algorithm Theory, WS 2019/20

Fabian Kuhn

Running Time

Theorem: The running time of the recursive, randomized min cut algorithm is $O(n^2 \log n)$.

Proof:

• Can be shown in the usual way, by induction on n

Remark:

- The running time is only by an $O(\log n)$ -factor slower than the basic contraction algorithm.
- The success probability is exponentially better!

Number of Minimum Cuts

- Given a graph *G*, how many minimum cuts can there be?
- Or alternatively: If G has edge connectivity $k \ge 1$, how many ways are there to remove k edges to disconnect G?
- Note that the total number of cuts is large.

Algorithm Theory, WS 2019/20

Number of Minimum Cuts

Number of Min Cuts $\mathcal{R}(A_{U}B) = \mathcal{R}(A) + \mathcal{R}(B) - \mathcal{R}(A_{U}B)$

Theorem: The number of minimum cuts of a graph is at most $\binom{n}{2}$.

Proof:

- Assume there are *s* min cuts
- For $i \in \{1, ..., s\}$, define event C_i : $C_i \coloneqq \{basic contraction algorithm returns min cut i\}$
- We know that for $i \in \{1, ..., s\}$: $\mathbb{P}(\underline{\mathcal{C}_i}) \ge 1/\binom{n}{2} = \frac{2}{n(n-1)}$
- Events C_1, \dots, C_s are disjoint: $S \cong \left(\bigcup_{i=1}^{s} C_i\right) = \sum_{i=1}^{s} \mathbb{P}(C_i) \cong \frac{S}{\binom{n}{2}}$ $S \subseteq \binom{n}{2}$

SZ

Counting Larger Cuts

- In the following, assume that min cut has size $\lambda = \lambda(G)$
- How many cuts of size $\leq k = \alpha \cdot \lambda$ can a graph have?
- Consider a specific cut (A, B) of size $\leq k$
- As before, during the contraction algorithm:
 - min cut size $\geq \lambda$
 - total number of edges $\ge \lambda \cdot \# nodes/2$
 - cut (A, B) remains as long as none of its edges gets contracted $\sim N - (i-1) = n - i + I$
- Prob. that an edge crossing (A, B) is chosen in $\underline{i}^{\text{th}}$ contraction

$$\leq \frac{k}{\#\text{edges}} \leq \frac{2k}{\lambda \cdot \#\text{nodes}} = \frac{2\alpha}{\frac{n-i+1}{n-i+1}}$$

For simplicity, in the following, assume that 2α is an integer

Counting Larger Cuts $|-\Re(\varepsilon_i|\varepsilon_{n-n}\varepsilon_{i-1}) \leq \frac{2\alpha}{n-i+1}$

$$\frac{1}{\binom{n}{2\alpha}} = \frac{(2\alpha)!}{n(n-1) \cdot \dots \cdot (n-2\alpha+1)} \ge \frac{2^{2\alpha-1}}{n^{2\alpha}}.$$

Proof:

• As before, event \mathcal{E}_{i} : cut (A, B) survives contraction i $\mathbb{P}(\mathcal{E},) \cdot \mathbb{P}(\mathcal{E}_{2} | \mathcal{E}_{1}) \cdot \mathbb{P}(\mathcal{E}_{3} | \mathcal{E}_{1} \cap \mathcal{E}_{2}) \cdots$ $= \frac{n \cdot 2\kappa}{n \cdot n - 1} \cdot \frac{n \cdot 2\kappa \cdot 2}{n \cdot 2\kappa + 1} = \frac{2}{2\kappa + 2} \cdot \frac{2}{2\kappa + 1} = \frac{1}{2\kappa + 1}$ $= \frac{1 \cdot 2 \cdot \dots \cdot 2\kappa}{n(n-1) \cdots (n-2\kappa+1)} = \frac{(2\kappa)!}{n(n-1) \cdots (n-2\kappa+1)} = \frac{1}{\binom{n}{2\kappa}}$

Fabian Kuhn

Number of Cuts

Theorem: If $2\alpha \in \mathbb{N}$, the number of edge cuts of size at most $\alpha \cdot \lambda(G)$ in an *n*-node graph *G* is at most $n^{2\alpha}$.

Proof: $\int of site \leq \alpha d$ $\mathbb{P}(\operatorname{cut}(A, B) \text{ survives } n-2\alpha \text{ edge conde.}) \geq \frac{2^{2\alpha-1}}{n^{2\alpha}}$ Proof: return a random remaining cut $\Re(redurn (A, B)) \ge \frac{20x-1}{n^{20x}} \cdot \frac{1}{\#rem.cuts}$ Zex nodes #cuts < 22x-1 $=\frac{1}{\sqrt{2\alpha}}$ === = N cuts of size E a.A

Remark: The bound also holds for general $\alpha \geq 1$.

Resilience To Edge Failures

FREBURG

- Consider a network (a graph) *G* with *n* nodes
- Assume that each link (edge) of G fails independently with probability \underline{p}
- How large can p be such that the remaining graph is still connected with high probability or with probability 1ϵ ?

Maintaining Connectivity

 A graph G = (V, E) is connected iff every edge cut (A, B) has size at least 1.

• We need to make sure that every cut keeps at least 1 edge

BURG

Resilience to Edge Failures

UNI FREIBURG

- Consider an edge cut (A, B) of size $k = \underline{\alpha \cdot \lambda(G)}$
- Assume that each edge fails with probability $p \leq 1 \frac{c \cdot \ln n}{\lambda(c)}$
- Hence each edge survives with probability $\underline{q} \geq \frac{c \cdot \ln n}{\lambda(G)}$
- Probability that no edge crossing (A, B) survives

$$p^{k} = p^{\alpha \lambda} \leq \left(1 - \frac{c \ln n}{\lambda}\right) \leq e^{-\frac{c \ln n}{\lambda} \cdot \alpha \lambda} = n$$

$$|+x \in e^{x}$$

Maintaining All Cuts of a Certain Size

• The number of cuts of size $k = \alpha \lambda(G)$ is at most $n^{2\alpha}$.

Claim: If each edge survives with probability $q \ge \frac{c \cdot \ln(n)}{\lambda(G)}$, with probability at least $1 - \frac{n}{2}$, for a given $k = \alpha \overline{\lambda(G)}$, at least one edge of each cut of size k survives. number cats of sive k from 1, ..., t = n200 for i < i1, ..., is : B: no edge of cut i survives $\mathbb{P}(\mathbb{B}_i) \leq n^{-\infty}$

Maintaining Connectivity $\Omega(q, k)$

FREIBURG

Theorem: If each edge of a graph G independently survives with probability at least $\frac{(d+4) \cdot \ln n}{\lambda(G)}$, the remaining graph is connected with probability at least $1 - \frac{1}{n^{d}}$. A_k : some cut of site k does not survive last slide: $P(A_k) \leq N^{(2-c)} \propto \frac{2-c}{5N} (\forall kn)$ R(some cat does not survive) = R(A, UA, U. U. UAvz) muion bound C=d+4