

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Approximation Algorithms

- Optimization appears everywhere in computer science
- We have seen many examples, e.g.:
 - scheduling jobs
 - traveling salesperson
 - maximum flow, maximum matching
 - minimum spanning tree
 - minimum vertex cover
 - ...
- Many discrete optimization problems are NP-hard
- They are however still important and we need to solve them
- As algorithm designers, we prefer algorithms that produce solutions which are provably good, even if we can't compute an optimal solution.

Approximation Algorithms: Examples

We have already seen two approximation algorithms

- Metric TSP: If distances are positive and satisfy the triangle inequality, the greedy tour is only by a log-factor longer than an optimal tour
- Maximum Matching and Vertex Cover: A maximal matching gives solutions that are within a factor of 2 for both problems.

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- OPT ≥ 0 : optimal objective value ALG ≥ 0 : objective value achieved by the algorithm
- Approximation Ratio α :

Minimization: $\alpha \coloneqq \max_{\text{input instances}} \frac{\text{ALG}}{\text{OPT}}$ Maximization: $\alpha \coloneqq \min_{\text{input instances}} \frac{\text{ALG}}{\text{OPT}}$

Example: Load Balancing

We are given:

- m machines M_1, \ldots, M_m
- *n* jobs, processing time of job *i* is *t_i*

Goal:

 Assign each job to a machine such that the makespan is minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore want to get a good approximation for the problem.

Greedy Algorithm

There is a simple greedy algorithm:

- Go through the jobs in an arbitrary order
- When considering job *i*, assign the job to the machine that currently has the smallest load.

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^n t_i$$

- Lower bound can be far from T*:
 - -m machines, m jobs of size 1, 1 job of size m

$$T^* = m$$
, $\frac{1}{m} \cdot \sum_{i=1}^{n} t_i = 2$

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^n t_i$$

• Second lower bound on optimal makespan T^* :

$$T^* \ge \max_{1 \le i \le n} t_i$$

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$. **Proof:**

- For machine k, let T_k be the time used by machine k
- Consider some machine M_i for which $T_i = T$
- Assume that job j is the last one schedule on M_i :

$$M_i: T - t_j t_j$$

• When job j is scheduled, M_i has the minimum load

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$. **Proof:**

• For all machines M_k : load $T_k \ge T - t_j$

Can We Do Better?

The analysis of the greedy algorithm is almost tight:

- Example with n = m(m 1) + 1 jobs
- Jobs 1, ..., n 1 = m(m 1) have $t_i = 1$, job n has $t_n = m$

Greedy Schedule:

Improving Greedy

Bad case for the greedy algorithm: One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

- 1. Sort jobs by decreasing length s.t. $t_1 \ge t_2 \ge \cdots \ge t_n$
- 2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If
$$n > m$$
: $T^* \ge t_m + t_{m+1} \ge 2t_{m+1}$

Proof:

- Two of the first m + 1 jobs need to be scheduled on the same machine
- Jobs m and m + 1 are the shortest of these jobs

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio $\leq \frac{3}{2}$. **Proof:**

- We show that $T \leq \frac{3}{2} \cdot T^*$
- As before, we consider the machine M_i with $T_i = T$
- Job j (of length t_j) is the last one scheduled on machine M_i
- If j is the only job on M_i , we have $T = T^*$
- Otherwise, we have $j \ge m + 1$
 - The first m jobs are assigned to m distinct machines