
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn



Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Approximation Algorithms

• Optimization appears everywhere in computer science

• We have seen many examples, e.g.:
– scheduling jobs

– traveling salesperson

– maximum flow, maximum matching

– minimum spanning tree

– minimum vertex cover

– …

• Many discrete optimization problems are NP-hard

• They are however still important and we need to solve them

• As algorithm designers, we prefer algorithms that produce 
solutions which are provably good, even if we can’t compute 
an optimal solution.



Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Approximation Algorithms: Examples

We have already seen two approximation algorithms

• Metric TSP: If distances are positive and satisfy the triangle 
inequality, the greedy tour is only by a log-factor longer than an 
optimal tour

• Maximum Matching and Vertex Cover: A maximal matching 
gives solutions that are within a factor of 2 for both problems.



Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Approximation Ratio

An approximation algorithm is an algorithm that computes a 
solution for an optimization with an objective value that is provably 
within a bounded factor of the optimal objective value.

Formally:

• OPT ≥ 0 : optimal objective value
ALG ≥ 0 : objective value achieved by the algorithm

• Approximation Ratio 𝜶:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐚𝐱
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 𝜶 ≔ 𝐦𝐢𝐧
𝐢𝐧𝐩𝐮𝐭 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝐀𝐋𝐆

𝐎𝐏𝐓



Algorithm Theory, WS 2019/20 Fabian Kuhn 5

Example: Load Balancing

We are given:

• 𝑚 machines 𝑀1, … ,𝑀𝑚

• 𝑛 jobs, processing time of job 𝑖 is 𝑡𝑖

Goal:

• Assign each job to a machine such that the makespan is 
minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore 
want to get a good approximation for the problem.



Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Greedy Algorithm

There is a simple greedy algorithm:

• Go through the jobs in an arbitrary order

• When considering job 𝑖, assign the job to the machine that 
currently has the smallest load.

Example: 3 machines, 12 jobs

3 4 2 613 4 4 2 51

Greedy Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3

4

2 3

1 6

4

4

2

1 5

Optimal Assignment:

𝑴𝟏:

𝑴𝟐:

𝑴𝟑:

3 4 2 13

4

4 51

3

3 6 3

2

3 4 2 613 4 4 2 513



Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with 
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Lower bound can be far from 𝑇∗:
– 𝑚 machines, 𝑚 jobs of size 1, 1 job of size 𝑚

𝑇∗ = 𝑚,
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖 = 2



Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Greedy Analysis

• We will show that greedy gives a 2-approximation

• To show this, we need to compare the solution of greedy with 
an optimal solution (that we can’t compute)

• Lower bound on the optimal makespan 𝑇∗:

𝑇∗ ≥
1

𝑚
⋅

𝑖=1

𝑛

𝑡𝑖

• Second lower bound on optimal makespan 𝑇∗:

𝑇∗ ≥ max
1≤𝑖≤𝑛

𝑡𝑖



Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e., 
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For machine 𝑘, let 𝑇𝑘 be the time used by machine 𝑘

• Consider some machine 𝑀𝑖 for which 𝑇𝑖 = 𝑇

• Assume that job 𝑗 is the last one schedule on 𝑀𝑖:

• When job 𝑗 is scheduled, 𝑀𝑖 has the minimum load

𝑇 − 𝑡𝑗 𝑡𝑗𝑴𝒊:



Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Greedy Analysis

Theorem: The greedy algorithm has approximation ratio ≤ 2, i.e., 
for the makespan 𝑇 of the greedy solution, we have 𝑇 ≤ 2𝑇∗.

Proof:

• For all machines 𝑀𝑘: load 𝑇𝑘 ≥ 𝑇 − 𝑡𝑗



Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Can We Do Better?

The analysis of the greedy algorithm is almost tight:

• Example with 𝑛 = 𝑚 𝑚 − 1 + 1 jobs

• Jobs 1,… , 𝑛 − 1 = 𝑚(𝑚 − 1) have 𝑡𝑖 = 1, job 𝑛 has 𝑡𝑛 = 𝑚

Greedy Schedule:

𝑀1:

𝑀2:

𝑀3:

𝑀𝑚:

⋮

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

⋯

⋯

⋯

⋯

⋮

𝑡𝑛 = 𝑚



Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Improving Greedy

Bad case for the greedy algorithm:
One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

1. Sort jobs by decreasing length s.t. 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑛
2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If 𝑛 > 𝑚: 𝑇∗ ≥ 𝑡𝑚 + 𝑡𝑚+1 ≥ 2𝑡𝑚+1

Proof:

• Two of the first 𝑚 + 1 jobs need to be scheduled on the same 
machine

• Jobs 𝑚 and 𝑚+ 1 are the shortest of these jobs



Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio ≤ Τ3 2.

Proof:

• We show that 𝑇 ≤ Τ3 2 ⋅ 𝑇
∗

• As before, we consider the machine 𝑀𝑖 with 𝑇𝑖 = 𝑇

• Job 𝑗 (of length 𝑡𝑗) is the last one scheduled on machine 𝑀𝑖

• If 𝑗 is the only job on 𝑀𝑖, we have 𝑇 = 𝑇∗

• Otherwise, we have 𝑗 ≥ 𝑚 + 1
– The first 𝑚 jobs are assigned to 𝑚 distinct machines


