

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Approximation Algorithms

- Optimization appears everywhere in computer science
- We have seen many examples, e.g.:
 - scheduling jobs
 - traveling salesperson
 - maximum flow, maximum matching
 - minimum spanning tree
 - minimum vertex cover
 - **–** ...
- Many discrete optimization problems are NP-hard
- They are however still important and we need to solve them
- As algorithm designers, we prefer algorithms that produce solutions which are provably good, even if we can't compute an optimal solution.

Approximation Algorithms: Examples

We have already seen two approximation algorithms

- Metric TSP: If distances are positive and satisfy the triangle inequality, the greedy tour is only by a log-factor longer than an optimal tour
- Maximum Matching and Vertex Cover: A maximal matching gives solutions that are within a factor of 2 for both problems.

Approximation Ratio

An approximation algorithm is an algorithm that computes a solution for an optimization with an objective value that is provably within a bounded factor of the optimal objective value.

Formally:

- $OPT \ge 0$: optimal objective value $ALG \ge 0$: objective value achieved by the algorithm
- Approximation Ratio α :

Minimization:
$$\alpha := \max_{\substack{\text{input instances}}} \frac{ALG}{OPT} \Rightarrow ALG$$

Maximization: $\alpha := \min_{\substack{\text{input instances}}} \frac{ALG}{OPT} \Rightarrow ALG$

Example: Load Balancing

We are given:

- m machines $M_1, ..., M_m$
- n jobs, processing time of job i is $\underline{t_i}$

Goal:

Assign each job to a machine such that the <u>makespan</u> is minimized

makespan: largest total processing time of any machine

The above load balancing problem is NP-hard and we therefore want to get a good approximation for the problem.

Greedy Algorithm

There is a simple greedy algorithm:

- Go through the jobs in an arbitrary order
- When considering job i, assign the job to the machine that currently has the smallest load.

Example: 3 machines, 12 jobs

Greedy Assignment:

$$M_1$$
: 3 1 6 1 5 M_2 : 4 4 3

Optimal Assignment:

$$M_1$$
: 3 4 2 3 1

$$M_2$$
: 6 4 3

$$M_3$$
: 4 2 1 5

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$\underline{T}^* \ge \frac{1}{m} \cdot \sum_{i=1}^n t_i$$

- Lower bound can be far from T*:
 - \underline{m} machines, \underline{m} jobs of size $\underline{1}$, 1 job of size \underline{m}

$$T^* = m, \qquad \frac{1}{m} \cdot \sum_{i=1}^{m} t_i = 2$$

- We will show that greedy gives a 2-approximation
- To show this, we need to compare the solution of greedy with an optimal solution (that we can't compute)
- Lower bound on the optimal makespan T^* :

$$T^* \ge \frac{1}{m} \cdot \sum_{i=1}^{n} t_i$$

Second lower bound on optimal makespan T*:

$$T^* \ge \max_{1 \le i \le n} t_i$$

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$.

Proof:

- For machine \underline{k} , let T_k be the time used by machine k
- Consider some machine M_i for which $T_i = T$
- Assume that job j is the last one schedule on M_i :

• When job j is scheduled, M_i has the minimum load

$$\forall k : T_k \geq T - t_i$$
 $\Rightarrow \sum_{s=1}^{n} t_s \geq m \cdot (T - t_i)$ avg. load $\geq T - t_i$

Theorem: The greedy algorithm has approximation ratio ≤ 2 , i.e., for the makespan T of the greedy solution, we have $T \leq 2T^*$.

Proof:

• For all machines M_k : load $T_k \ge T - t_j$

Can We Do Better?

The analysis of the greedy algorithm is almost tight:

- Example with n = m(m-1) + 1 jobs
- Jobs $1, \dots, n-1 = \underline{m(m-1)}$ have $t_i = 1$, job n has $t_n = m$

Greedy Schedule:

$$M_1$$
: 1111 ... 1 $t_n = m$
 M_2 : 1111 ... 1

 M_3 : 1111 ... 1

 M_m : 1111 ... 1

Improving Greedy

Bad case for the greedy algorithm:

One large job in the end can destroy everything

Idea: assign large jobs first

Modified Greedy Algorithm:

- 1. Sort jobs by decreasing length s.t. $t_1 \ge t_2 \ge \cdots \ge t_n$
- 2. Apply the greedy algorithm as before (in the sorted order)

Lemma: If $\underline{n > m}$: $\underline{T^*} \ge \underline{t_m + t_{m+1}} \ge \underline{2t_{m+1}}$

Proof:

- Two of the first m+1 jobs need to be scheduled on the same machine
- Jobs m and m+1 are the shortest of these jobs

Analysis of the Modified Greedy Alg.

Theorem: The modified algorithm has approximation ratio $\leq \frac{3}{2}$.

Proof:

• We show that $\underline{T} \leq 3/2 \cdot T^*$

- As before, we consider the machine M_i with $T_i = T$
- Job j (of length t_j) is the last one scheduled on machine M_i
- If j is the only job on M_i , we have $T = T^*$
- Otherwise, we have $j \ge m + 1$
 - The first m jobs are assigned to m distinct machines

