Approximation Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Metric TSP

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \rightarrow \mathbb{R}$, i.e., $d(u, v)$ is dist from u to v
- Distances define a metric on V :

$$
\begin{aligned}
& d(u, v)=d(v, u) \geq 0, \quad d(u, v)=0 \Leftrightarrow u=v \\
& \forall u, v, w \in V: d(u, v) \leq d(u, w)+d(w, v)
\end{aligned}
$$

Solution:

- Ordering/permutation $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right)$
- Length of TSP tour: $d\left(v_{1}, v_{n}\right)+\sum_{i=1}^{n-1} d\left(v_{i}, v_{i+1}\right)$

Goal:

- Minimize length of TSP path or TSP tour

Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$-approximation
- Can we get a constant approximation ratio?
- We will see that we can...

TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

Proof:

- A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.

The MST Tour

Walk around the MST...

The MST Tour
Walk around the MST...
Cost (walk) $=2 \cdot$ weight(MST)
Cost (tour) < $2 \cdot$ weight(MST)

Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most $2 \cdot$ weight(MST)
- We have seen that weight (MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

Claim: Given a metric (V, d) and $\left(V^{\prime}, d\right)$ for $V^{\prime} \subseteq V$, the optimal TSP path/tour of $\left(V^{\prime}, d\right)$ is at most as large as the optimal TSP path/tour of (V, d).

Optimal TSP tour of nodes 1, 2, ... 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12
blue tour \leq green tour

TSP and Matching

- Consider a metric TSP instance (V, d) with an even number of nodes $|V|$
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because $|V|$ is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into $|V| / 2$ pairs is a perfect matching.
- The weight of a matching M is the sum of the distances represented by all edges in M :

$$
w(M)=\sum_{\{u, v\} \in M} d(u, v)
$$

TSP and Matching

Lemma: Assume we are given a TSP instance (V, d) with an even number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of (V, d).

Proof:

- The edges of a TSP tour can be partitioned into 2 perfect matchings

Minimum Weight Perfect Matching

Claim: If $|V|$ is even, a minimum weight perfect matching of (V, d) can be computed in polynomial time

Proof Sketch:

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in a complete (non-bipartite) graph can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the Blossom algorithm as a subroutine

Algorithm Outline

Problem of MST algorithm:

- Every edge has to be visited twice

Goal:

- Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)

Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

Euler Tour

Theorem: A connected (multi-)graph G has an Euler tour if and only if every node of G has even degree.

Proof:

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:

1. Start at some node
2. As long as possible, follow an unvisited edge

- Gives a partial tour, the remaining graph still has even degree

3. Solve problem on remaining components recursively
4. Merge the obtained tours into one tour that visits all edges

TSP Algorithm

1. Compute MST T
2. $V_{\text {odd }}$: nodes that have an odd degree in T ($\left|V_{\text {odd }}\right|$ is even)
3. Compute min weight perfect matching M of $\left(V_{\text {odd }}, d\right)$
4. $(V, T \cup M)$ is a (multi-)graph with even degrees

TSP Algorithm

5. Compute Euler tour on $(V, T \cup M)$
6. Total length of Euler tour $\leq \frac{3}{2} \cdot \mathbf{T S P}_{\mathbf{O P T}}$
7. Get TSP tour by taking shortcuts wherever the Euler tour visits a node twice

TSP Algorithm

- The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $3 / 2$.

Proof:

- The length of the Euler tour is $\leq 3 / 2 \cdot \mathrm{TSP}_{\mathrm{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Set Cover

Input:

- A set of elements X and a collection \mathcal{S} of subsets X, i.e., $\mathcal{S} \subseteq 2^{X}$
- such that $\mathrm{U}_{S \in S} S=X$

Set Cover:

- A set cover \mathcal{C} of (X, \mathcal{S}) is a subset of the sets \mathcal{S} which covers X :

$$
\bigcup_{S \in \mathcal{C}} S=X
$$

Example:

Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
- i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in \mathcal{S}$ has a weight $w_{S}>0$
- Goal: Find a set cover \mathcal{C} of minimum weight

Example:

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $\mathcal{C}=\varnothing$
- In each step, add set $S \in \mathcal{S} \backslash \mathcal{C}$ to \mathcal{C} s.t. S covers as many uncovered elements as possible

Example:

Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

- Start with $\mathcal{C}=\varnothing$
- In each step, add set $S \in \mathcal{S} \backslash \mathcal{C}$ with the best weight per newly covered element ratio (set with best efficiency):

$$
S=\arg \min _{S \in \mathcal{S} \backslash \mathcal{C}} \frac{w_{S}}{\left|S \backslash \cup_{T \in \mathcal{C}} T\right|}
$$

Analysis of Greedy Algorithm:

- Assign a price $p(x)$ to each element $x \in X$:

The efficiency of the set when covering the element

- If covering x with set S, if partial cover is \mathcal{C} before adding S :

$$
p(e)=\frac{w_{S}}{\left|S \backslash \cup_{T \in \mathcal{C}} T\right|}
$$

Weighted Set Cover: Greedy Algorithm

Example:

- Universe $X=\{1,2,3,4,5,6,7,8,9,10\}$
- Sets $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}\right\}$

$$
\begin{array}{ll}
S_{1}=\{1,2,3,4,5\}, & w_{S_{1}}=4 \\
S_{2}=\{2,6,7\}, & w_{S_{2}}=1 \\
S_{3}=\{1,6,7,8,9\}, & w_{S_{3}}=4 \\
S_{4}=\{2,4,7,9,10\}, & w_{S_{4}}=6 \\
S_{5}=\{1,3,5,6,7,8,9,10\}, & w_{S_{5}}=9 \\
S_{6}=\{9,10\}, & w_{S_{6}}=3
\end{array}
$$

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathcal{S}$ be a set and assume that the elements are covered in the order $x_{1}, x_{2}, \ldots, x_{k}$ by the greedy algorithm (ties broken arbitrarily).
Then, the price of element x_{i} is at most $p\left(x_{i}\right) \leq \frac{w_{S}}{k-i+1}$

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathcal{S}$ be a set and assume that the elements are covered in the order $x_{1}, x_{2}, \ldots, x_{k}$ by the greedy algorithm (ties broken arbitrarily).
Then, the price of element x_{i} is at most $p\left(x_{i}\right) \leq \frac{w_{S}}{k-i+1}$
Corollary: The total price of a set $S \in \mathcal{S}$ of size $|S|=k$ is

$$
\sum_{x \in S} p(x) \leq w_{S} \cdot H_{k}, \quad \text { where } H_{k}=\sum_{i=1}^{k} \frac{1}{i} \leq 1+\ln k
$$

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set $S \in \mathcal{S}$ of size $|S|=k$ is

$$
\sum_{x \in S} p(x) \leq w_{S} \cdot H_{k}, \quad \text { where } H_{k}=\sum_{i=1}^{k} \frac{1}{i} \leq 1+\ln k
$$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $\boldsymbol{H}_{s} \leq \mathbf{1}+\ln s$, where s is the cardinality of the largest set $\left(s=\max _{S \in \mathcal{S}}|S|\right)$.

Set Cover Greedy Algorithm

Can we improve this analysis?
No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq(1-o(1)) \cdot \ln s$.

- if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n) . .$.

$$
\mathrm{OPT}=2
$$

GREEDY $\geq \log _{2} n$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...
Can we improve the approximation ratio?
No, unfortunately not, unless $\mathrm{P}=\mathrm{NP}$
Dinur \& Steurer showed in 2013 that unless $P=N P$, minimum set cover cannot be approximated better than by a factor $(1-o(1))$. $\ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
- PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
- Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph $G=(V, E)$ such that

$$
\forall\{\boldsymbol{u}, \boldsymbol{v}\} \in E, \quad\{\boldsymbol{u}, \boldsymbol{v}\} \cap S \neq \varnothing .
$$

Minimum Vertex Cover:

- Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

Vertex Cover vs Matching

Consider a matching M and a vertex cover S
Claim: $|M| \leq|S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M

Vertex Cover vs Matching

Consider a matching M and a vertex cover S
Claim: If M is maximal and S is minimum, $|S| \leq 2|M|$

Proof:

- M is maximal: for every edge $\{u, v\} \in E$, either u or v (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size $|S|=2|M|$.

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching M^{*}, it holds that

$$
|M| \geq \frac{\left|M^{*}\right|}{2}
$$

Proof:

Theorem: The set of all matched nodes of a maximal matching M is a vertex cover of size at most twice the size of a min. vertex cover.

Set Cover: Special Cases

Dominating Set:

Given a graph $G=(V, E)$, a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \backslash S$, there is a neighbor $v \in S$.

Minimum Hitting Set

Given: Set of elements X and collection of subsets $\mathcal{S} \subseteq 2^{X}$

- Sets cover $X: \cup_{S \in \mathcal{S}} S=X$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that

$$
\forall S \in \mathcal{S}: S \cap H \neq \emptyset
$$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

Sets

Elements

Knapsack

- n items $1, \ldots, n$, each item has weight $w_{i}>0$ and value $v_{i}>0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most W and total value is maximized:

- E.g.: jobs of length w_{i} and value v_{i}, server available for W time units, try to execute a set of jobs that maximizes the total value

Knapsack: Dynamic Programming Alg.

We have shown:

- If all item weights w_{i} are integers, using dynamic programming, the knapsack problem can be solved in time $O(n W)$
- If all values v_{i} are integers, there is another dynamic progr. algorithm that runs in time $O\left(n^{2} V\right)$, where V is the max. value.

