

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Metric TSP

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \rightarrow \mathbb{R}$, i.e., d(u, v) is dist from u to v
- Distances define a metric on V: $d(u,v) = d(v,u) \ge 0, \quad d(u,v) = 0 \Leftrightarrow u = v$ $\forall u, v, w \in V : d(u,v) \le d(u,w) + d(w,v)$

Solution:

- Ordering/permutation v_1, v_2, \dots, v_n of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

• Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2019/20

Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.

The MST Tour

Walk around the MST...

The MST Tour

Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

Claim: Given a metric (V, d) and (V', d) for $V' \subseteq V$, the optimal TSP path/tour of (V', d) is at most as large as the optimal TSP path/tour of (V, d).

TSP and Matching

- Consider a metric TSP instance (V, d) with an even number of nodes |V|
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$w(M) = \sum_{\{u,v\}\in M} d(u,v)$$

Algorithm Theory, WS 2019/20

Fabian Kuhn

TSP and Matching

Lemma: Assume we are given a TSP instance (V, d) with an even number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of (V, d).

Proof:

The edges of a TSP tour can be partitioned into 2 perfect matchings

Minimum Weight Perfect Matching

Claim: If |V| is even, a minimum weight perfect matching of (V, d) can be computed in polynomial time

Proof Sketch:

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in a complete (non-bipartite) graph can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the Blossom algorithm as a subroutine

Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

 Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour)

Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

Euler Tour

Theorem: A connected (multi-)graph *G* has an Euler tour if and only if every node of *G* has even degree.

Proof:

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
 - Gives a partial tour, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges

TSP Algorithm

- 1. Compute MST *T*
- 2. V_{odd} : nodes that have an odd degree in T ($|V_{odd}|$ is even)
- 3. Compute min weight perfect matching M of (V_{odd}, d)
- 4. $(V, T \cup M)$ is a (multi-)graph with even degrees

TSP Algorithm

- 5. Compute Euler tour on $(V, T \cup M)$
- 6. Total length of Euler tour $\leq \frac{3}{2} \cdot \text{TSP}_{\text{OPT}}$
- Get TSP tour by taking shortcuts wherever the Euler tour visits a node twice

TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation ratio of at most $\frac{3}{2}$.

Proof:

- The length of the Euler tour is $\leq 3/2 \cdot \text{TSP}_{\text{OPT}}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Set Cover

Input:

- A set of elements X and a collection S of subsets X, i.e., $S \subseteq 2^X$
 - such that $\bigcup_{S \in S} S = X$

Set Cover:

• A set cover C of (X, S) is a subset of the sets S which covers X:

$$\bigcup_{S \in \mathcal{C}} S = X$$

Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover \mathcal{C} of smallest possible size
 - i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

- Each set $S \in S$ has a weight $w_S > 0$
- **Goal:** Find a set cover C of minimum weight

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C to C s.t. S covers as many uncovered elements as possible

Example:

Greedy Weighted Set Cover Algorithm:

- Start with $C = \emptyset$
- In each step, add set S ∈ S \ C with the best weight per newly covered element ratio (set with best efficiency):

$$S = \arg\min_{S \in S \setminus C} \frac{w_S}{\left| S \setminus \bigcup_{T \in C} T \right|}$$

Analysis of Greedy Algorithm:

- Assign a price p(x) to each element x ∈ X:
 The efficiency of the set when covering the element
- If covering x with set S, if partial cover is C before adding S:

$$p(e) = \frac{w_S}{\left| S \setminus \bigcup_{T \in \mathcal{C}} T \right|}$$

Example:

• Universe $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

• Sets
$$S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$$

 $S_1 = \{1, 2, 3, 4, 5\},$ $w_{S_1} = 4$
 $S_2 = \{2, 6, 7\},$ $w_{S_2} = 1$
 $S_3 = \{1, 6, 7, 8, 9\},$ $w_{S_3} = 4$
 $S_4 = \{2, 4, 7, 9, 10\},$ $w_{S_4} = 6$
 $S_5 = \{1, 3, 5, 6, 7, 8, 9, 10\},$ $w_{S_5} = 9$
 $S_6 = \{9, 10\},$ $w_{S_6} = 3$

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

Corollary: The total price of a set $S \in S$ of size |S| = k is $\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$

Corollary: The total price of a set $S \in S$ of size |S| = k is $\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_s \leq 1 + \ln s$, where s is the cardinality of the largest set ($s = \max_{S \in S} |S|$).

Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln s$.

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...

•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•

OPT = 2 $GREEDY \ge \log_2 n$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Dinur & Steurer showed in 2013 that unless P = NP, minimum set cover cannot be approximated better than by a factor $(1 - o(1)) \cdot \ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
 - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
 - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph G = (V, E) such that $\forall \{u, v\} \in E, \quad \{u, v\} \cap S \neq \emptyset.$

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

Vertex Cover vs Matching

Consider a matching *M* and a vertex cover *S*

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from *M*

Vertex Cover vs Matching

FREIBURG

Consider a matching *M* and a vertex cover *S*

Claim: If *M* is maximal and *S* is minimum, $|S| \le 2|M|$

Proof:

• *M* is maximal: for every edge {*u*, *v*} ∈ *E*, either *u* or *v* (or both) are matched

- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Algorithm Theory, WS 2019/20

Fabian Kuhn

Maximal Matching Approximation

FREIBURG

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$|M| \geq \frac{|M^*|}{2}.$$

Proof:

Theorem: The set of all matched nodes of a maximal matching *M* is a vertex cover of size at most twice the size of a min. vertex cover.

UNI FREBUR

Dominating Set:

Given a graph G = (V, E), a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \setminus S$, there is a neighbor $v \in S$.

Minimum Hitting Set

Given: Set of elements X and collection of subsets $S \subseteq 2^X$

- Sets cover
$$X: \bigcup_{S \in \mathcal{S}} S = X$$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that $\forall S \in S : S \cap H \neq \emptyset$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

Knapsack

- *n* items 1, ..., *n*, each item has weight $w_i > 0$ and value $v_i > 0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

$$\max \sum_{i \in S} v_i$$

s.t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \le W$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time O(nW)
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.