

Chapter 8 Approximation Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Metric TSP

Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function $d: V \times V \to \mathbb{R}$, i.e., d(u, v) is dist from u to v
- Distances define a metric on *V*:

$$d(u,v) = d(v,u) \ge 0, \qquad d(u,v) = 0 \Leftrightarrow u = v$$

$$\forall u,v,w \in V: d(u,v) \le d(u,w) + d(w,v) \quad \text{frayle ineq.}$$

Solution:

- Ordering/permutation $\widehat{v_1}, \widehat{v_2}, \dots, \widehat{v_n}$ of the vertices
- Length of TSP path: $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour: $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

Goal:

Minimize length of TSP path or TSP tour

Metric TSP

- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

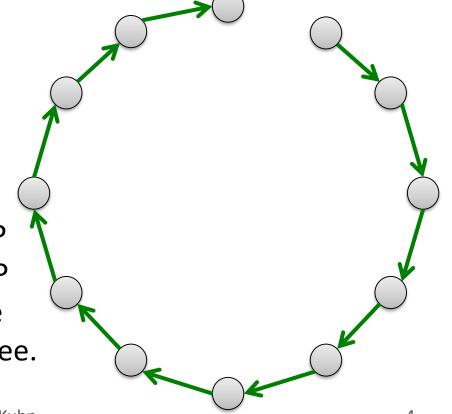
TSP and MST

Claim: The length of an optimal <u>TSP path</u> is lower bounded by the weight of a minimum spanning tree

Proof:

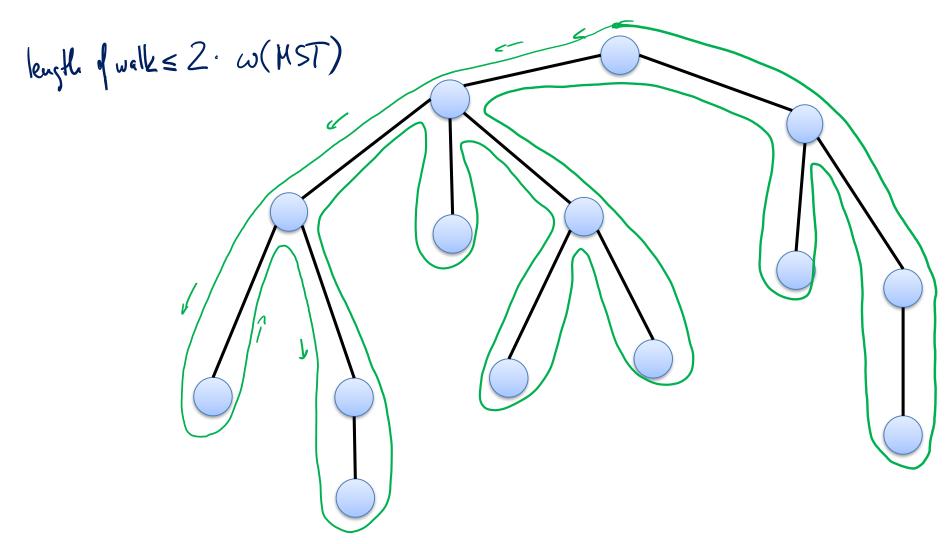
A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.



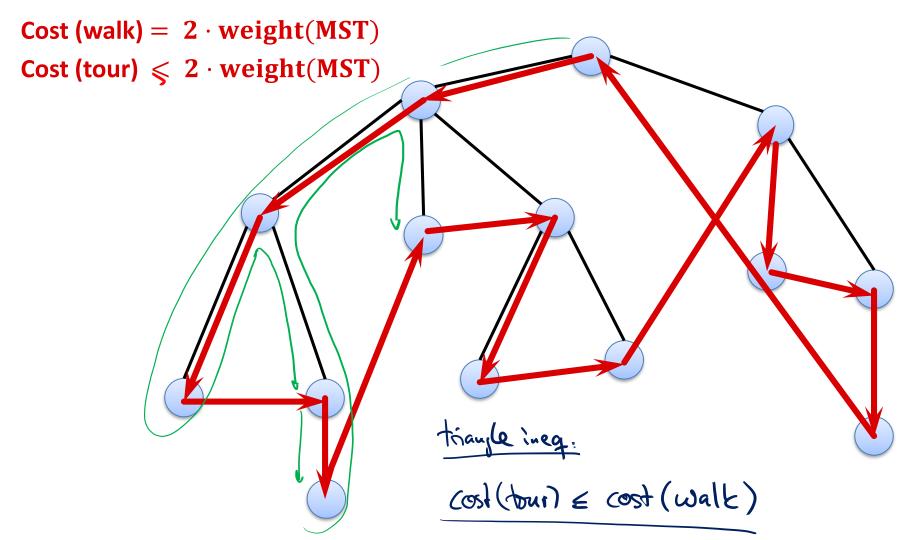
The MST Tour

Walk around the MST...



The MST Tour

Walk around the MST...



Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the metric TSP problem.

Proof:

- Triangle inequality \rightarrow length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length

Can we do even better?

Metric TSP Subproblems

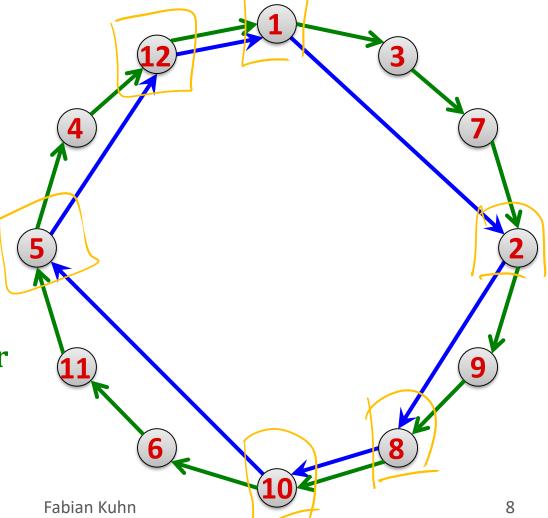
Claim: Given a metric (V, d) and (V', d) for $V' \subseteq V$, the optimal TSP path/tour of (V', d) is at most as large as the optimal TSP

path/tour of (V, d).

Optimal TSP tour of nodes 1, 2, ..., 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12

blue tour ≤ green tour



TSP and Matching

- Consider a metric TSP instance (V, d) with an even number of nodes |V|
- Recall that a perfect matching is a matching $M \subseteq V \times V$ such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes $u, v \in V$, any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$\underline{\underline{w(M)}} = \sum_{\{u,v\}\in M} d\underline{(u,v)}$$

TSP and Matching

Lemma: Assume we are given a $\underline{\mathsf{TSP}}$ instance (V, d) with an $\underline{\mathsf{even}}$ number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of

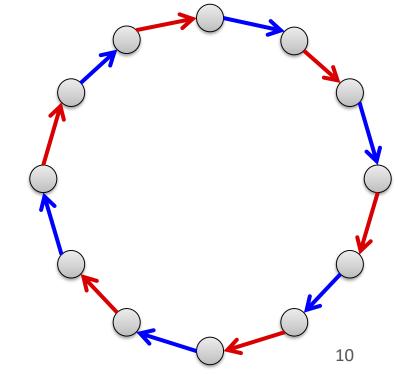
(V,d).

 $W(M) \leq \frac{1}{2} \cosh(TSP_{tous})$ win weight perfect matching

• The edges of a TSP tour can be partitioned into 2 perfect

matchings

Proof:



Minimum Weight Perfect Matching

Claim: If |V| is even, a minimum weight perfect matching of (V,d) can be computed in polynomial time

Proof Sketch:

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in a complete (non-bipartite) graph can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the <u>Blossom algorithm</u> as a subroutine

Algorithm Outline

Problem of MST algorithm:

Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour) who possible we a tree

Euler Tours:

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

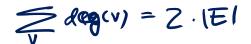
Euler Tour

Theorem: A connected (multi-)graph G has an Euler tour if and only if every node of G has even degree.

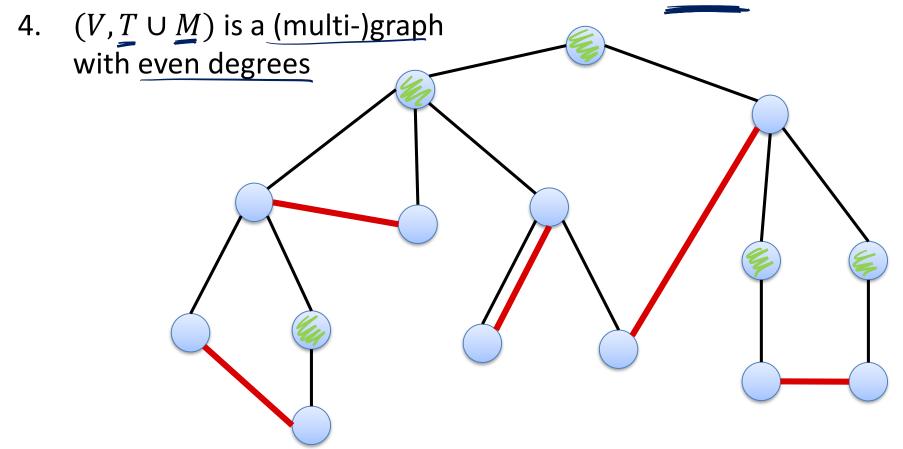
Proof:

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
 - Gives a partial tour, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges

TSP Algorithm

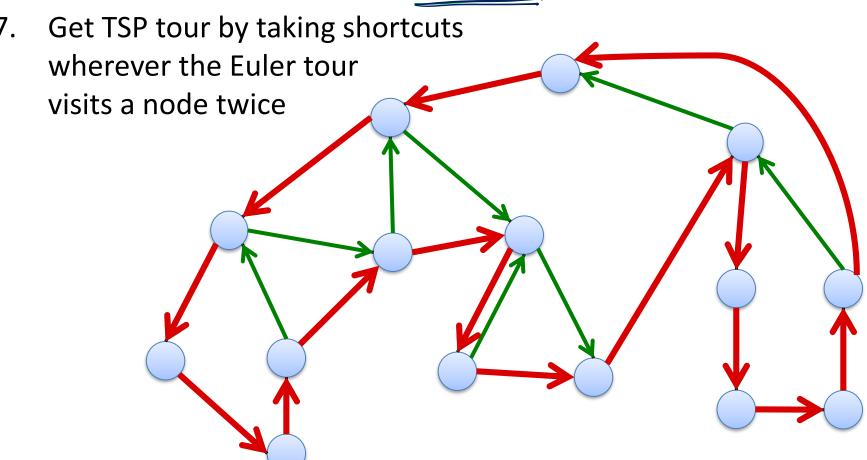


- 1. Compute MST T
- 2. V_{odd} : nodes that have an odd degree in T ($|V_{\text{odd}}|$ is even)
- 3. Compute min weight perfect matching M of (V_{odd}, d)



TSP Algorithm

- 5. Compute Euler tour on $(V, T \cup M)$
- 6. Total length of Euler tour $\leq \frac{3}{2} \cdot TSP_{OPT}$
- Enter tour = w(MST)
 + w (matching)



TSP Algorithm

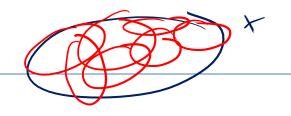
The described algorithm is by <u>Christofides</u>

Theorem: The Christofides algorithm achieves an approximation ratio of at most $^{3}/_{2}$.

Proof:

- The length of the Euler tour is $\leq \frac{3}{2} \cdot \text{TSP}_{OPT}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

Set Cover



Input:

• A set of elements X and a collection S of subsets X, i.e., $S \subseteq 2^X$

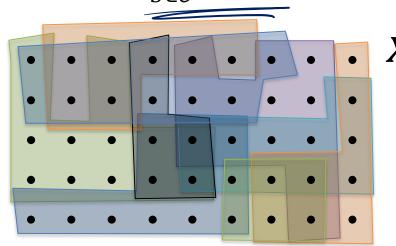
- such that
$$\bigcup_{S \in \mathcal{S}} S = X$$

Set Cover:

, set system

• A set cover \mathcal{C} of (X, \mathcal{S}) is a subset of the sets \mathcal{S} which covers X:

$$\bigcup_{S \in \mathcal{C}} S = X$$



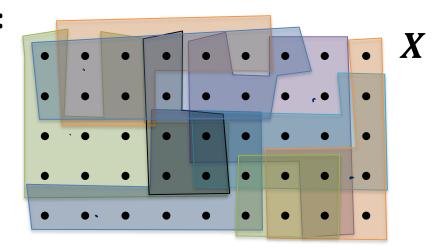
Minimum (Weighted) Set Cover

Minimum Set Cover:

- Goal: Find a set cover $\mathcal C$ of smallest possible size
 - i.e., over X with as few sets as possible

Minimum Weighted Set Cover:

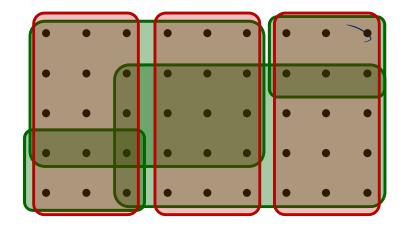
- Each set $S \in S$ has a weight $w_S > 0$
- Goal: Find a set cover C of minimum weight



Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

- Start with $\mathcal{C} = \emptyset$
- In each step, add set $S \in S \setminus C$ to C s.t. S covers as many uncovered elements as possible



Greedy Weighted Set Cover Algorithm:

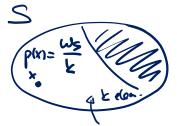
• Start with $C = \emptyset$

- C: current set of subsets of &
- In each step, add set $S \in S \setminus C$ with the best weight per newly covered element ratio (set with best efficiency):

S = arg min
$$\frac{W_S}{|S| |U_{T \in C}T|}$$
 # gively covered to the Algorithm:

Analysis of Greedy Algorithm:

- Assign a price p(x) to each element $x \in X$: The efficiency of the set when covering the element

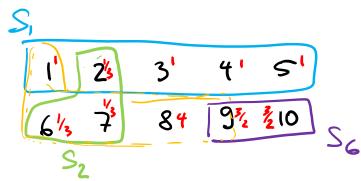


$$p(\mathbf{x}) = \frac{w_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|}$$

$$\sum_{x \in X} p(x) = \sum_{T \in C} \omega_{T}$$

- Universe $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- Sets $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$

$$S_1 = \{1, 2, 3, 4, 5\},\$$
 $w_{S_1} = 4 - 2,\$ $S_2 = \{2, 6, 7\},\$ $w_{S_2} = 1 - 1,\$ $w_{S_3} = 4 - 4,\$ $w_{S_4} = \{2, 3, 3, 6, 7, 8, 9, 10\},\$ $w_{S_4} = 6,\$ $w_{S_5} = \{3, 3, 3, 6, 7, 8, 9, 10\},\$ $w_{S_6} = 3 - 3,\$ $w_{S_6} = 3,\$



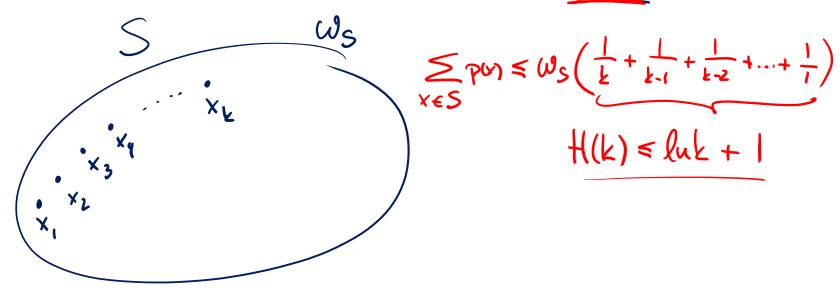
total poice:

$$3 \cdot \frac{1}{3} + 4 \cdot 1 + 2 \cdot \frac{3}{2} + 1 \cdot 4 = 12$$

total weight: 12

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $\underline{x_1, x_2, ..., x_k}$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $\underline{\underline{p}(x_i)} \leq \underline{\underline{w_S}}$



$$P(X_1) \leq \frac{\omega_s}{k}$$
, $P(X_2) \leq \frac{\omega_s}{k-1}$, $P(X_3) \leq \frac{\omega_s}{k-2}$

Lemma: Consider a set $S = \{x_1, x_2, ..., x_k\} \in S$ be a set and assume that the elements are covered in the order $x_1, x_2, ..., x_k$ by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x_i is at most $p(x_i) \le \frac{w_S}{k-i+1}$

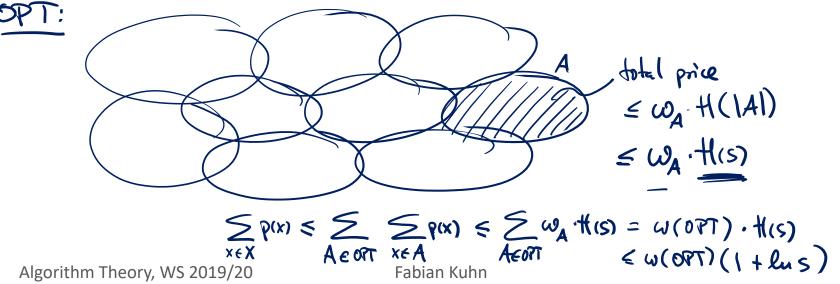
Corollary: The total price of a set $S \in \mathcal{S}$ of size |S| = k is

$$\sum_{\underline{x \in S}} p(x) \le \underline{w_S} \cdot \underline{H_k}, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$

Corollary: The total price of a set $S \in \mathcal{S}$ of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$

Theorem: The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most $H_s \leq 1 + \ln s$, where s is the cardinality of the largest set $(s = \max_{S \in \mathcal{S}} |S|)$.



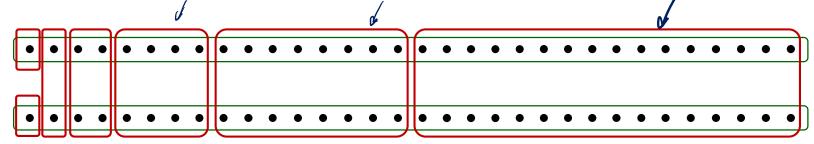
Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is $\geq (1 - o(1)) \cdot \ln s$.

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least $\Omega(\log n)$...



$$OPT = 2$$

$$GREEDY \ge \log_2 n$$

Set Cover: Better Algorithm?

An approximation ratio of $\ln n$ seems not spectacular...

Can we improve the approximation ratio?

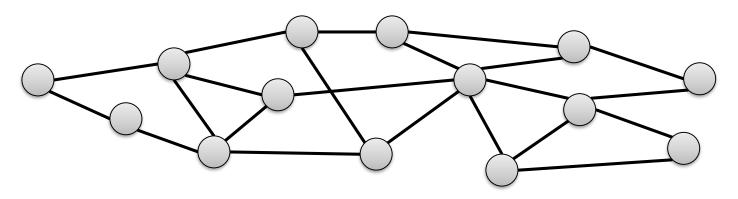
No, unfortunately not, unless P = NP

Dinur & Steurer showed in 2013 that unless P = NP, minimum set cover cannot be approximated better than by a factor $(1 - o(1)) \cdot \ln n$ in polynomial time.

- Proof is based on the so-called PCP theorem
 - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
 - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

Set Cover: Special Cases

Vertex Cover: set $S \subseteq V$ of nodes of a graph G = (V, E) such that $\forall \{u, v\} \in E$, $\{u, v\} \cap S \neq \emptyset$.



Minimum Vertex Cover:

Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

- Each node has a weight
- Find a vertex cover of minimum total weight

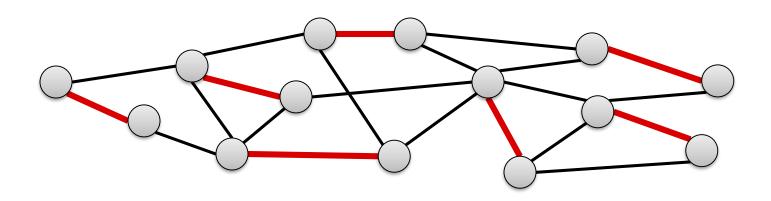
Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: $|M| \leq |S|$

Proof:

- At least one node of every edge $\{u, v\} \in M$ is in S
- Needs to be a different node for different edges from M



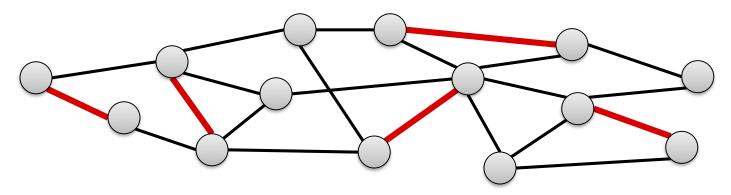
Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, $|S| \le 2|M|$

Proof:

• M is maximal: for every edge $\{u,v\} \in E$, either u or v (or both) are matched



- Every edge $e \in E$ is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

Maximal Matching Approximation

Theorem: For any maximal matching M and any maximum matching M^* , it holds that

$$|M| \ge \frac{|M^*|}{2}.$$

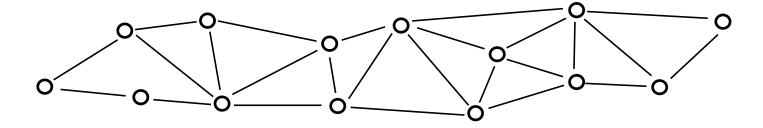
Proof:

Theorem: The set of all matched nodes of a maximal matching M is a vertex cover of size at most twice the size of a min. vertex cover.

Set Cover: Special Cases

Dominating Set:

Given a graph G = (V, E), a dominating set $S \subseteq V$ is a subset of the nodes V of G such that for all nodes $u \in V \setminus S$, there is a neighbor $v \in S$.



Minimum Hitting Set

Given: Set of elements X and collection of subsets $S \subseteq 2^X$

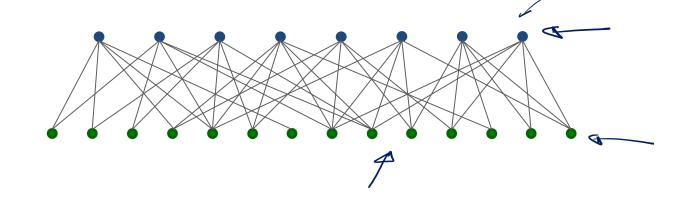
− Sets cover $X: \bigcup_{S \in S} S = X$

Goal: Find a min. cardinality subset $H \subseteq X$ of elements such that $\forall S \in S : S \cap H \neq \emptyset$

Problem is equivalent to min. set cover with roles of sets and elements interchanged

<u>Sets</u>

Elements



Knapsack

- \underline{n} items $1, ..., \underline{n}$, each item has weight $w_i > 0$ and value $\underline{v_i} > 0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most
 W and total value is maximized:

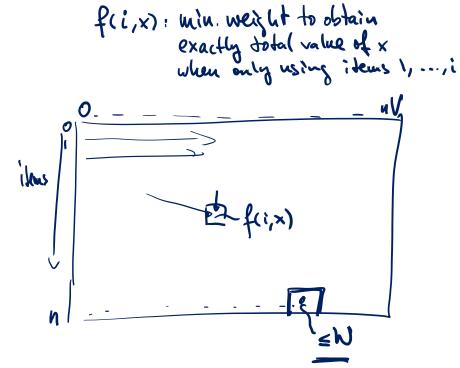
$$\max \sum_{i \in S} v_i$$
s. t. $S \subseteq \{1, ..., n\}$ and $\sum_{i \in S} w_i \leq W$

• E.g.: jobs of length w_i and value v_i , server available for W time units, try to execute a set of jobs that maximizes the total value

Knapsack: Dynamic Programming Alg.

We have shown:

- If all item weights w_i are integers, using dynamic programming, the knapsack problem can be solved in time $O(\underline{nW})$
- If all values v_i are integers, there is another dynamic progr. algorithm that runs in time $O(n^2V)$, where V is the max. value.



$$f(i,0) = 0$$

$$f(0,x) = \infty \qquad (for x>0)$$

$$f(i,x) = \min \left\{ \begin{cases} f(i-i,x) \\ f(i-i,x-v_i) + \omega_i \end{cases} \right\}$$

$$V := \max_{i} V_{i}$$