

# Chapter 8 Approximation Algorithms

Algorithm Theory WS 2019/20

**Fabian Kuhn** 

## **Metric TSP**





### Input:

- Set V of n nodes (points, cities, locations, sites)
- Distance function  $d: V \times V \to \mathbb{R}$ , i.e., d(u, v) is dist from u to v
- Distances define a metric on *V*:

$$d(u,v) = d(v,u) \ge 0, \qquad d(u,v) = 0 \Leftrightarrow u = v$$

$$\forall u,v,w \in V: d(u,v) \le d(u,w) + d(w,v) \quad \text{frayle ineq.}$$

#### **Solution:**

- Ordering/permutation  $\widehat{v_1}, \widehat{v_2}, \dots, \widehat{v_n}$  of the vertices
- Length of TSP path:  $\sum_{i=1}^{n-1} d(v_i, v_{i+1})$
- Length of TSP tour:  $d(v_1, v_n) + \sum_{i=1}^{n-1} d(v_i, v_{i+1})$

#### **Goal:**

Minimize length of TSP path or TSP tour

## Metric TSP



- The problem is NP-hard
- We have seen that the greedy algorithm (always going to the nearest unvisited node) gives an  $O(\log n)$ -approximation
- Can we get a constant approximation ratio?
- We will see that we can...

# TSP and MST



**Claim:** The length of an optimal <u>TSP path</u> is lower bounded by the weight of a minimum spanning tree

#### **Proof:**

A TSP path is a spanning tree, it's length is the weight of the tree

Corollary: Since an optimal TSP tour is longer than an optimal TSP path, the length of an optimal TSP tour is also lower bounded by the weight of a minimum spanning tree.



## The MST Tour



Walk around the MST...



## The MST Tour



#### Walk around the MST...



# **Approximation Ratio of MST Tour**



**Theorem:** The MST TSP tour gives a 2-approximation for the metric TSP problem.

#### **Proof:**

- Triangle inequality  $\rightarrow$  length of tour is at most 2 · weight(MST)
- We have seen that weight(MST) < opt. tour length</li>

Can we do even better?

# Metric TSP Subproblems



**Claim:** Given a metric (V, d) and (V', d) for  $V' \subseteq V$ , the optimal TSP path/tour of (V', d) is at most as large as the optimal TSP

path/tour of (V, d).

Optimal TSP tour of nodes 1, 2, ..., 12

Induced TSP tour for nodes 1, 2, 5, 8, 10, 12

**blue tour** ≤ green tour



# TSP and Matching



- Consider a metric TSP instance (V, d) with an even number of nodes |V|
- Recall that a perfect matching is a matching  $M \subseteq V \times V$  such that every node of V is incident to an edge of M.
- Because |V| is even and because in a metric TSP, there is an edge between any two nodes  $u, v \in V$ , any partition of V into |V|/2 pairs is a perfect matching.
- The weight of a matching *M* is the sum of the distances represented by all edges in *M*:

$$\underline{\underline{w(M)}} = \sum_{\{u,v\}\in M} d\underline{(u,v)}$$

# TSP and Matching



**Lemma:** Assume we are given a  $\underline{\mathsf{TSP}}$  instance (V, d) with an  $\underline{\mathsf{even}}$ number of nodes. The length of an optimal TSP tour of (V, d) is at least twice the weight of a minimum weight perfect matching of

(V,d).

 $W(M) \leq \frac{1}{2} \cosh(TSP_{tous})$ win weight perfect matching

• The edges of a TSP tour can be partitioned into 2 perfect

matchings

**Proof:** 



# Minimum Weight Perfect Matching



**Claim:** If |V| is even, a minimum weight perfect matching of (V,d) can be computed in polynomial time

#### **Proof Sketch:**

- We have seen that a minimum weight perfect matching in a complete bipartite graph can be computed in polynomial time
- With a more complicated algorithm, also a minimum weight perfect matching in a complete (non-bipartite) graph can be computed in polynomial time
- The algorithm uses similar ideas as the bipartite weighted matching algorithm and it uses the <u>Blossom algorithm</u> as a subroutine

# Algorithm Outline



### Problem of MST algorithm:

Every edge has to be visited twice

#### **Goal:**

• Get a graph on which every edge only has to be visited once (and where still the total edge weight is small compared to an optimal TSP tour) who possible we a tree

#### **Euler Tours:**

- A tour that visits each edge of a graph exactly once is called an Euler tour
- An Euler tour in a (multi-)graph exists if and only if every node of the graph has even degree
- That's definitely not true for a tree, but can we modify our MST suitably?

## **Euler Tour**



**Theorem:** A connected (multi-)graph G has an Euler tour if and only if every node of G has even degree.

#### **Proof:**

- If G has an odd degree node, it clearly cannot have an Euler tour
- If G has only even degree nodes, a tour can be found recursively:
- 1. Start at some node
- 2. As long as possible, follow an unvisited edge
  - Gives a partial tour, the remaining graph still has even degree
- 3. Solve problem on remaining components recursively
- 4. Merge the obtained tours into one tour that visits all edges

# TSP Algorithm





- 1. Compute MST T
- 2.  $V_{\text{odd}}$ : nodes that have an odd degree in T ( $|V_{\text{odd}}|$  is even)
- 3. Compute min weight perfect matching M of  $(V_{\text{odd}}, d)$



# TSP Algorithm



- 5. Compute Euler tour on  $(V, T \cup M)$
- 6. Total length of Euler tour  $\leq \frac{3}{2} \cdot TSP_{OPT}$
- Enter tour = w(MST)
  + w (matching)



# TSP Algorithm



The described algorithm is by <u>Christofides</u>

**Theorem:** The Christofides algorithm achieves an approximation ratio of at most  $^{3}/_{2}$ .

#### **Proof:**

- The length of the Euler tour is  $\leq \frac{3}{2} \cdot \text{TSP}_{OPT}$
- Because of the triangle inequality, taking shortcuts can only make the tour shorter

## Set Cover





## Input:

• A set of elements X and a collection S of subsets X, i.e.,  $S \subseteq 2^X$ 

- such that 
$$\bigcup_{S \in \mathcal{S}} S = X$$

## **Set Cover:**

, set system

• A set cover  $\mathcal{C}$  of  $(X, \mathcal{S})$  is a subset of the sets  $\mathcal{S}$  which covers X:

$$\bigcup_{S \in \mathcal{C}} S = X$$



# Minimum (Weighted) Set Cover



#### **Minimum Set Cover:**

- Goal: Find a set cover  $\mathcal C$  of smallest possible size
  - i.e., over X with as few sets as possible

## **Minimum Weighted Set Cover:**

- Each set  $S \in S$  has a weight  $w_S > 0$
- Goal: Find a set cover C of minimum weight



# Minimum Set Cover: Greedy Algorithm



## **Greedy Set Cover Algorithm:**

- Start with  $\mathcal{C} = \emptyset$
- In each step, add set  $S \in S \setminus C$  to C s.t. S covers as many uncovered elements as possible





## **Greedy Weighted Set Cover Algorithm:**

• Start with  $C = \emptyset$ 

- C: current set of subsets of &
- In each step, add set  $S \in S \setminus C$  with the best weight per newly covered element ratio (set with best efficiency):

S = arg min 
$$\frac{W_S}{|S| |U_{T \in C}T|}$$
 # gively covered to the Algorithm:

## **Analysis of Greedy Algorithm:**

- Assign a price p(x) to each element  $x \in X$ : The efficiency of the set when covering the element



$$p(\mathbf{x}) = \frac{w_S}{|S \setminus \bigcup_{T \in \mathcal{C}} T|}$$

$$\sum_{x \in X} p(x) = \sum_{T \in C} \omega_{T}$$



- Universe  $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- Sets  $S = \{S_1, S_2, S_3, S_4, S_5, S_6\}$

$$S_1 = \{1, 2, 3, 4, 5\},\$$
  $w_{S_1} = 4 - 2,\$   $S_2 = \{2, 6, 7\},\$   $w_{S_2} = 1 - 1,\$   $w_{S_3} = 4 - 4,\$   $w_{S_4} = \{2, 3, 3, 6, 7, 8, 9, 10\},\$   $w_{S_4} = 6,\$   $w_{S_5} = \{3, 3, 3, 6, 7, 8, 9, 10\},\$   $w_{S_6} = 3 - 3,\$   $w_{S_6} = 3,\$ 



total poice:

$$3 \cdot \frac{1}{3} + 4 \cdot 1 + 2 \cdot \frac{3}{2} + 1 \cdot 4 = 12$$

total weight: 12



**Lemma:** Consider a set  $S = \{x_1, x_2, ..., x_k\} \in S$  be a set and assume that the elements are covered in the order  $\underline{x_1, x_2, ..., x_k}$  by the greedy algorithm (ties broken arbitrarily).

Then, the price of element  $x_i$  is at most  $\underline{\underline{p}(x_i)} \leq \underline{\underline{w_S}}$ 



$$P(X_1) \leq \frac{\omega_s}{k}$$
,  $P(X_2) \leq \frac{\omega_s}{k-1}$ ,  $P(X_3) \leq \frac{\omega_s}{k-2}$ 



**Lemma:** Consider a set  $S = \{x_1, x_2, ..., x_k\} \in S$  be a set and assume that the elements are covered in the order  $x_1, x_2, ..., x_k$  by the greedy algorithm (ties broken arbitrarily).

Then, the price of element  $x_i$  is at most  $p(x_i) \le \frac{w_S}{k-i+1}$ 

**Corollary:** The total price of a set  $S \in \mathcal{S}$  of size |S| = k is

$$\sum_{\underline{x \in S}} p(x) \le \underline{w_S} \cdot \underline{H_k}, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$



**Corollary:** The total price of a set  $S \in \mathcal{S}$  of size |S| = k is

$$\sum_{x \in S} p(x) \le w_S \cdot H_k, \quad \text{where } H_k = \sum_{i=1}^k \frac{1}{i} \le 1 + \ln k$$

**Theorem:** The approximation ratio of the greedy minimum (weighted) set cover algorithm is at most  $H_s \leq 1 + \ln s$ , where s is the cardinality of the largest set  $(s = \max_{S \in \mathcal{S}} |S|)$ .



# Set Cover Greedy Algorithm



Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the approximation ratio of the greedy algorithm is  $\geq (1 - o(1)) \cdot \ln s$ .

• if s is the size of the largest set... (s can be linear in n)

Let's show that the approximation ratio is at least  $\Omega(\log n)$ ...



$$OPT = 2$$

$$GREEDY \ge \log_2 n$$

# Set Cover: Better Algorithm?



An approximation ratio of  $\ln n$  seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Dinur & Steurer showed in 2013 that unless P = NP, minimum set cover cannot be approximated better than by a factor  $(1 - o(1)) \cdot \ln n$  in polynomial time.

- Proof is based on the so-called PCP theorem
  - PCP theorem is one of the main (relatively) recent advancements in theoretical computer science and the major tool to prove approximation hardness lower bounds
  - Shows that every language in NP has certificates of polynomial length that can be checked by a randomized algorithm by only querying a constant number of bits (for any constant error probability)

# Set Cover: Special Cases



**Vertex Cover:** set  $S \subseteq V$  of nodes of a graph G = (V, E) such that  $\forall \{u, v\} \in E$ ,  $\{u, v\} \cap S \neq \emptyset$ .



#### **Minimum Vertex Cover:**

Find a vertex cover of minimum cardinality

## **Minimum Weighted Vertex Cover:**

- Each node has a weight
- Find a vertex cover of minimum total weight

# Vertex Cover vs Matching



Consider a matching M and a vertex cover S

Claim:  $|M| \leq |S|$ 

#### **Proof:**

- At least one node of every edge  $\{u, v\} \in M$  is in S
- Needs to be a different node for different edges from M



# Vertex Cover vs Matching



Consider a matching M and a vertex cover S

**Claim:** If M is maximal and S is minimum,  $|S| \le 2|M|$ 

#### **Proof:**

• M is maximal: for every edge  $\{u,v\} \in E$ , either u or v (or both) are matched



- Every edge  $e \in E$  is "covered" by at least one matching edge
- Thus, the set of the nodes of all matching edges gives a vertex cover S of size |S| = 2|M|.

# Maximal Matching Approximation



**Theorem:** For any maximal matching M and any maximum matching  $M^*$ , it holds that

$$|M| \ge \frac{|M^*|}{2}.$$

**Proof:** 

**Theorem:** The set of all matched nodes of a maximal matching M is a vertex cover of size at most twice the size of a min. vertex cover.

# Set Cover: Special Cases



#### **Dominating Set:**

Given a graph G = (V, E), a dominating set  $S \subseteq V$  is a subset of the nodes V of G such that for all nodes  $u \in V \setminus S$ , there is a neighbor  $v \in S$ .



# Minimum Hitting Set



**Given:** Set of elements X and collection of subsets  $S \subseteq 2^X$ 

− Sets cover  $X: \bigcup_{S \in S} S = X$ 

**Goal:** Find a min. cardinality subset  $H \subseteq X$  of elements such that  $\forall S \in S : S \cap H \neq \emptyset$ 

Problem is equivalent to min. set cover with roles of sets and elements interchanged

## <u>Sets</u>

## **Elements**



# Knapsack



- $\underline{n}$  items  $1, ..., \underline{n}$ , each item has weight  $w_i > 0$  and value  $\underline{v_i} > 0$
- Knapsack (bag) of capacity W
- Goal: pack items into knapsack such that total weight is at most
   W and total value is maximized:

$$\max \sum_{i \in S} v_i$$
s. t.  $S \subseteq \{1, ..., n\}$  and  $\sum_{i \in S} w_i \leq W$ 

• E.g.: jobs of length  $w_i$  and value  $v_i$ , server available for W time units, try to execute a set of jobs that maximizes the total value

# Knapsack: Dynamic Programming Alg.



#### We have shown:

- If all item weights  $w_i$  are integers, using dynamic programming, the knapsack problem can be solved in time  $O(\underline{nW})$
- If all values  $v_i$  are integers, there is another dynamic progr. algorithm that runs in time  $O(n^2V)$ , where V is the max. value.



$$f(i,0) = 0$$

$$f(0,x) = \infty \qquad (for x>0)$$

$$f(i,x) = \min \left\{ \begin{cases} f(i-i,x) \\ f(i-i,x-v_i) + \omega_i \end{cases} \right\}$$

$$V := \max_{i} V_{i}$$