
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Metric TSP

Input:

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites)

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣) is dist from 𝑢 to 𝑣

• Distances define a metric on 𝑉:
𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 ≥ 0, 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣
∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ∶ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

Solution:

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of the vertices

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣1, 𝑣𝑛 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal:

• Minimize length of TSP path or TSP tour

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Metric TSP

• The problem is NP-hard

• We have seen that the greedy algorithm (always going to the
nearest unvisited node) gives an 𝑂(log 𝑛)-approximation

• Can we get a constant approximation ratio?

• We will see that we can…

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the
weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it’s length is the weight of the tree

Corollary: Since an optimal TSP
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

The MST Tour

Walk around the MST…

19

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

The MST Tour

Walk around the MST…
Cost (walk) = 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

Cost (tour) < 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

19

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the
metric TSP problem.

Proof:

• Triangle inequality  length of tour is at most 2 ⋅ weight(MST)

• We have seen that weight MST < opt. tour length

Can we do even better?

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

Metric TSP Subproblems

Claim: Given a metric (𝑉, 𝑑) and (𝑉′, 𝑑) for 𝑉′ ⊆ 𝑉, the optimal
TSP path/tour of (𝑉′, 𝑑) is at most as large as the optimal TSP
path/tour of (𝑉, 𝑑).

Optimal TSP tour of
nodes 𝟏, 𝟐,… , 𝟏𝟐

Induced TSP tour for
nodes 𝟏, 𝟐, 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐

𝐛𝐥𝐮𝐞 𝐭𝐨𝐮𝐫 ≤ 𝐠𝐫𝐞𝐞𝐧 𝐭𝐨𝐮𝐫

1

2

3

4

5

6

7

9

8
10

11

12

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

TSP and Matching

• Consider a metric TSP instance (𝑉, 𝑑) with an even number of
nodes |𝑉|

• Recall that a perfect matching is a matching 𝑀 ⊆ 𝑉 × 𝑉 such
that every node of 𝑉 is incident to an edge of 𝑀.

• Because |𝑉| is even and because in a metric TSP, there is an
edge between any two nodes 𝑢, 𝑣 ∈ 𝑉, any partition of 𝑉 into
𝑉 /2 pairs is a perfect matching.

• The weight of a matching 𝑀 is the sum of the distances
represented by all edges in 𝑀:

𝑤 𝑀 =෍
𝑢,𝑣 ∈𝑀

𝑑(𝑢, 𝑣)

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

TSP and Matching

Lemma: Assume we are given a TSP instance 𝑉, 𝑑 with an even
number of nodes. The length of an optimal TSP tour of (𝑉, 𝑑) is at
least twice the weight of a minimum weight perfect matching of
(𝑉, 𝑑).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect
matchings

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

Minimum Weight Perfect Matching

Claim: If 𝑉 is even, a minimum weight perfect matching of (𝑉, 𝑑)
can be computed in polynomial time

Proof Sketch:

• We have seen that a minimum weight perfect matching in a
complete bipartite graph can be computed in polynomial time

• With a more complicated algorithm, also a minimum weight
perfect matching in a complete (non-bipartite) graph can be
computed in polynomial time

• The algorithm uses similar ideas as the bipartite weighted
matching algorithm and it uses the Blossom algorithm as a
subroutine

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once
(and where still the total edge weight is small compared to an
optimal TSP tour)

Euler Tours:

• A tour that visits each edge of a graph exactly once is called an
Euler tour

• An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

• That’s definitely not true for a tree, but can we modify our
MST suitably?

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Euler Tour

Theorem: A connected (multi-)graph 𝐺 has an Euler tour if and only
if every node of 𝐺 has even degree.

Proof:

• If 𝐺 has an odd degree node, it clearly cannot have an Euler tour

• If 𝐺 has only even degree nodes, a tour can be found recursively:

1. Start at some node

2. As long as possible, follow
an unvisited edge
– Gives a partial tour, the remaining

graph still has even degree

3. Solve problem on remaining components recursively

4. Merge the obtained tours into one tour that visits all edges

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

TSP Algorithm

1. Compute MST 𝑇

2. 𝑉odd: nodes that have an odd degree in 𝑇 (|𝑉odd| is even)

3. Compute min weight perfect matching 𝑀 of (𝑉odd, 𝑑)

4. (𝑉, 𝑇 ∪ 𝑀) is a (multi-)graph
with even degrees

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

TSP Algorithm

5. Compute Euler tour on (𝑉, 𝑇 ∪ 𝑀)

6. Total length of Euler tour ≤
𝟑

𝟐
⋅ 𝐓𝐒𝐏𝐎𝐏𝐓

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation
ratio of at most Τ3 2.

Proof:

• The length of the Euler tour is ≤ Τ3 2 ⋅ TSPOPT
• Because of the triangle inequality, taking shortcuts can only

make the tour shorter

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

Set Cover

Input:

• A set of elements 𝑋 and a collection 𝒮 of subsets 𝑋, i.e., 𝒮 ⊆ 2𝑋

– such that ڂ𝑆∈𝒮 𝑆 = 𝑋

Set Cover:

• A set cover 𝒞 of (𝑋, 𝒮) is a subset of the sets 𝒮 which covers 𝑋:

ራ

𝑆∈𝒞

𝑆 = 𝑋

Example: 𝑿

Algorithm Theory, WS 2019/20 Fabian Kuhn 18

Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝑋 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example:
𝑿

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 to 𝒞 s.t. 𝑆 covers as many
uncovered elements as possible

Example:

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per
newly covered element ratio (set with best efficiency):

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Analysis of Greedy Algorithm:

• Assign a price 𝑝 𝑥 to each element 𝑥 ∈ 𝑋:
The efficiency of the set when covering the element

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆:

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Algorithm Theory, WS 2019/20 Fabian Kuhn 21

Weighted Set Cover: Greedy Algorithm

Example:

• Universe 𝑋 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Sets 𝒮 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6

𝑆1 = 1, 2, 3, 4, 5 , 𝑤𝑆1 = 4

𝑆2 = 2, 6, 7 , 𝑤𝑆2 = 1

𝑆3 = 1, 6, 7, 8, 9 , 𝑤𝑆3 = 4

𝑆4 = 2, 4, 7, 9, 10 , 𝑤𝑆4 = 6

𝑆5 = 1, 3, 5, 6, 7, 8, 9, 10 , 𝑤𝑆5 = 9

𝑆6 = 9, 10 , 𝑤𝑆6 = 3

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

෍

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =෍

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Algorithm Theory, WS 2019/20 Fabian Kuhn 24

Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

෍

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =෍

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithm is at most 𝑯𝒔 ≤ 𝟏 + 𝐥𝐧 𝒔, where 𝑠
is the cardinality of the largest set (𝑠 = max

𝑆∈𝒮
|𝑆|).

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the

approximation ratio of the greedy algorithm is ≥ 1 − 𝑜 1 ⋅ ln 𝑠.

• if 𝑠 is the size of the largest set... (𝑠 can be linear in 𝑛)

Let’s show that the approximation ratio is at least Ω log 𝑛 ...

𝐎𝐏𝐓 = 𝟐

𝐆𝐑𝐄𝐄𝐃𝐘 ≥ 𝐥𝐨𝐠𝟐 𝒏

Algorithm Theory, WS 2019/20 Fabian Kuhn 26

Set Cover: Better Algorithm?

An approximation ratio of ln 𝑛 seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Dinur & Steurer showed in 2013 that unless P = NP, minimum set

cover cannot be approximated better than by a factor 1 − 𝑜 1 ⋅

ln 𝑛 in polynomial time.

• Proof is based on the so-called PCP theorem
– PCP theorem is one of the main (relatively) recent advancements in

theoretical computer science and the major tool to prove approximation
hardness lower bounds

– Shows that every language in NP has certificates of polynomial length
that can be checked by a randomized algorithm by only querying a
constant number of bits (for any constant error probability)

Algorithm Theory, WS 2019/20 Fabian Kuhn 27

Set Cover: Special Cases

Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes of a graph 𝐺 = (𝑉, 𝐸) such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

• Each node has a weight

• Find a vertex cover of minimum total weight

Algorithm Theory, WS 2019/20 Fabian Kuhn 28

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof:

• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆

• Needs to be a different node for different edges from 𝑀

Algorithm Theory, WS 2019/20 Fabian Kuhn 29

Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: If 𝑀 is maximal and 𝑆 is minimum, 𝑆 ≤ 2 𝑀

Proof:

• 𝑀 is maximal: for every edge 𝑢, 𝑣 ∈ 𝐸, either 𝑢 or 𝑣 (or both)
are matched

• Every edge 𝑒 ∈ 𝐸 is “covered” by at least one matching edge

• Thus, the set of the nodes of all matching edges gives a vertex
cover 𝑆 of size 𝑆 = 2|𝑀|.

Algorithm Theory, WS 2019/20 Fabian Kuhn 30

Maximal Matching Approximation

Theorem: For any maximal matching 𝑀 and any maximum matching
𝑀∗, it holds that

𝑀 ≥
𝑀∗

2
.

Proof:

Theorem: The set of all matched nodes of a maximal matching 𝑀 is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2019/20 Fabian Kuhn 31

Set Cover: Special Cases

Dominating Set:
Given a graph 𝐺 = 𝑉, 𝐸 , a dominating set 𝑆 ⊆ 𝑉 is a subset of
the nodes 𝑉 of 𝐺 such that for all nodes 𝑢 ∈ 𝑉 ∖ 𝑆, there is a
neighbor 𝑣 ∈ 𝑆.

Algorithm Theory, WS 2019/20 Fabian Kuhn 32

Minimum Hitting Set

Given: Set of elements 𝑋 and collection of subsets 𝒮 ⊆ 2𝑋

– Sets cover 𝑋: ڂ𝑆∈𝒮 𝑆 = 𝑋

Goal: Find a min. cardinality subset 𝐻 ⊆ 𝑋 of elements such that

∀𝑆 ∈ 𝒮 ∶ 𝑆 ∩ 𝐻 ≠ ∅

Problem is equivalent to min. set cover with roles of sets and
elements interchanged

Sets

Elements

Algorithm Theory, WS 2019/20 Fabian Kuhn 33

Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 > 0 and value 𝑣𝑖 > 0

• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most
𝑊 and total value is maximized:

max෍

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊 time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2019/20 Fabian Kuhn 34

Knapsack: Dynamic Programming Alg.

We have shown:

• If all item weights 𝑤𝑖 are integers, using dynamic programming,
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr.
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.

