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Metric TSP

Input: 

• Set 𝑉 of 𝑛 nodes (points, cities, locations, sites) 

• Distance function 𝑑: 𝑉 × 𝑉 → ℝ, i.e., 𝑑(𝑢, 𝑣) is dist from 𝑢 to 𝑣

• Distances define a metric on 𝑉:
𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢 ≥ 0, 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣
∀𝑢, 𝑣, 𝑤 ∈ 𝑉 ∶ 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣)

Solution: 

• Ordering/permutation 𝑣1, 𝑣2, … , 𝑣𝑛 of the vertices

• Length of TSP path: σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

• Length of TSP tour: 𝑑 𝑣1, 𝑣𝑛 + σ𝑖=1
𝑛−1𝑑 𝑣𝑖 , 𝑣𝑖+1

Goal: 

• Minimize length of TSP path or TSP tour 
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Metric TSP

• The problem is NP-hard

• We have seen that the greedy algorithm (always going to the 
nearest unvisited node) gives an 𝑂(log 𝑛)-approximation

• Can we get a constant approximation ratio?

• We will see that we can…
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TSP and MST

Claim: The length of an optimal TSP path is lower bounded by the 
weight of a minimum spanning tree

Proof:

• A TSP path is a spanning tree, it’s length is the weight of the tree

Corollary: Since an optimal TSP 
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.
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The MST Tour

Walk around the MST…

19
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The MST Tour

Walk around the MST…
Cost (walk) = 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

Cost (tour)  < 𝟐 ⋅ 𝐰𝐞𝐢𝐠𝐡𝐭(𝐌𝐒𝐓)

19
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Approximation Ratio of MST Tour

Theorem: The MST TSP tour gives a 2-approximation for the 
metric TSP problem.

Proof:

• Triangle inequality  length of tour is at most 2 ⋅ weight(MST)

• We have seen that weight MST < opt. tour length

Can we do even better?
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Metric TSP Subproblems

Claim: Given a metric (𝑉, 𝑑) and (𝑉′, 𝑑) for 𝑉′ ⊆ 𝑉, the optimal 
TSP path/tour of (𝑉′, 𝑑) is at most as large as the optimal TSP 
path/tour of (𝑉, 𝑑).

Optimal TSP tour of 
nodes 𝟏, 𝟐,… , 𝟏𝟐

Induced TSP tour for
nodes 𝟏, 𝟐, 𝟓, 𝟖, 𝟏𝟎, 𝟏𝟐

𝐛𝐥𝐮𝐞 𝐭𝐨𝐮𝐫 ≤ 𝐠𝐫𝐞𝐞𝐧 𝐭𝐨𝐮𝐫
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TSP and Matching

• Consider a metric TSP instance (𝑉, 𝑑) with an even number of 
nodes |𝑉|

• Recall that a perfect matching is a matching 𝑀 ⊆ 𝑉 × 𝑉 such 
that every node of 𝑉 is incident to an edge of 𝑀.

• Because |𝑉| is even and because in a metric TSP, there is an 
edge between any two nodes 𝑢, 𝑣 ∈ 𝑉, any partition of 𝑉 into 
𝑉 /2 pairs is a perfect matching.

• The weight of a matching 𝑀 is the sum of the distances 
represented by all edges in 𝑀:

𝑤 𝑀 =෍
𝑢,𝑣 ∈𝑀

𝑑(𝑢, 𝑣)
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TSP and Matching

Lemma: Assume we are given a TSP instance 𝑉, 𝑑 with an even 
number of nodes. The length of an optimal TSP tour of (𝑉, 𝑑) is at 
least twice the weight of a minimum weight perfect matching of 
(𝑉, 𝑑).

Proof:

• The edges of a TSP tour can be partitioned into 2 perfect 
matchings
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Minimum Weight Perfect Matching

Claim: If 𝑉 is even, a minimum weight perfect matching of (𝑉, 𝑑)
can be computed in polynomial time

Proof Sketch:

• We have seen that a minimum weight perfect matching in a 
complete bipartite graph can be computed in polynomial time

• With a more complicated algorithm, also a minimum weight 
perfect matching in a complete (non-bipartite) graph can be 
computed in polynomial time

• The algorithm uses similar ideas as the bipartite weighted 
matching algorithm and it uses the Blossom algorithm as a 
subroutine 
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Algorithm Outline

Problem of MST algorithm:

• Every edge has to be visited twice

Goal:

• Get a graph on which every edge only has to be visited once 
(and where still the total edge weight is small compared to an 
optimal TSP tour)

Euler Tours:

• A tour that visits each edge of a graph exactly once is called an 
Euler tour

• An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

• That’s definitely not true for a tree, but can we modify our 
MST suitably?
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Euler Tour

Theorem: A connected (multi-)graph 𝐺 has an Euler tour if and only 
if every node of 𝐺 has even degree.

Proof:

• If 𝐺 has an odd degree node, it clearly cannot have an Euler tour

• If 𝐺 has only even degree nodes, a tour can be found recursively:

1. Start at some node

2. As long as possible, follow
an unvisited edge
– Gives a partial tour, the remaining

graph still has even degree

3. Solve problem on remaining components recursively

4. Merge the obtained tours into one tour that visits all edges 
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TSP Algorithm

1. Compute MST 𝑇

2. 𝑉odd: nodes that have an odd degree in 𝑇 (|𝑉odd| is even)

3. Compute min weight perfect matching 𝑀 of (𝑉odd, 𝑑)

4. (𝑉, 𝑇 ∪ 𝑀) is a (multi-)graph
with even degrees
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TSP Algorithm

5. Compute Euler tour on (𝑉, 𝑇 ∪ 𝑀)

6. Total length of Euler tour ≤
𝟑

𝟐
⋅ 𝐓𝐒𝐏𝐎𝐏𝐓

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice
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TSP Algorithm

• The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation 
ratio of at most Τ3 2.

Proof:

• The length of the Euler tour is ≤ Τ3 2 ⋅ TSPOPT
• Because of the triangle inequality, taking shortcuts can only 

make the tour shorter
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Set Cover

Input:

• A set of elements 𝑋 and a collection 𝒮 of subsets 𝑋, i.e., 𝒮 ⊆ 2𝑋

– such that ڂ𝑆∈𝒮 𝑆 = 𝑋

Set Cover:

• A set cover 𝒞 of (𝑋, 𝒮) is a subset of the sets 𝒮 which covers 𝑋:

ራ

𝑆∈𝒞

𝑆 = 𝑋

Example: 𝑿
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Minimum (Weighted) Set Cover

Minimum Set Cover:

• Goal: Find a set cover 𝒞 of smallest possible size
– i.e., over 𝑋 with as few sets as possible

Minimum Weighted Set Cover:

• Each set 𝑆 ∈ 𝒮 has a weight 𝑤𝑆 > 0

• Goal: Find a set cover 𝒞 of minimum weight

Example: 
𝑿
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Minimum Set Cover: Greedy Algorithm

Greedy Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 to 𝒞 s.t. 𝑆 covers as many 
uncovered elements as possible

Example:
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Weighted Set Cover: Greedy Algorithm

Greedy Weighted Set Cover Algorithm:

• Start with 𝒞 = ∅

• In each step, add set 𝑆 ∈ 𝒮 ∖ 𝒞 with the best weight per 
newly covered element ratio (set with best efficiency):

𝑆 = arg min
𝑆∈𝒮∖𝒞

𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇

Analysis of Greedy Algorithm:

• Assign a price 𝑝 𝑥 to each element 𝑥 ∈ 𝑋:
The efficiency of the set when covering the element

• If covering 𝑥 with set 𝑆, if partial cover is 𝒞 before adding 𝑆:

𝑝 𝑒 =
𝑤𝑆

𝑆 ∖ 𝑇∈𝒞ڂ 𝑇
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Weighted Set Cover: Greedy Algorithm

Example:

• Universe 𝑋 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Sets 𝒮 = 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6

𝑆1 = 1, 2, 3, 4, 5 , 𝑤𝑆1 = 4

𝑆2 = 2, 6, 7 , 𝑤𝑆2 = 1

𝑆3 = 1, 6, 7, 8, 9 , 𝑤𝑆3 = 4

𝑆4 = 2, 4, 7, 9, 10 , 𝑤𝑆4 = 6

𝑆5 = 1, 3, 5, 6, 7, 8, 9, 10 , 𝑤𝑆5 = 9

𝑆6 = 9, 10 , 𝑤𝑆6 = 3
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1
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Weighted Set Cover: Greedy Algorithm

Lemma: Consider a set 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑘} ∈ 𝒮 be a set and
assume that the elements are covered in the order 𝑥1, 𝑥2, … , 𝑥𝑘
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element 𝑥𝑖 is at most 𝑝 𝑥𝑖 ≤
𝑤𝑆

𝑘−𝑖+1

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

෍

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =෍

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘
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Weighted Set Cover: Greedy Algorithm

Corollary: The total price of a set 𝑆 ∈ 𝒮 of size 𝑆 = 𝑘 is

෍

𝑥∈𝑆

𝑝 𝑥 ≤ 𝑤𝑆 ⋅ 𝐻𝑘 , where 𝐻𝑘 =෍

𝑖=1

𝑘
1

𝑖
≤ 1 + ln 𝑘

Theorem: The approximation ratio of the greedy minimum 
(weighted) set cover algorithm is at most 𝑯𝒔 ≤ 𝟏 + 𝐥𝐧 𝒔, where 𝑠
is the cardinality of the largest set (𝑠 = max

𝑆∈𝒮
|𝑆|).
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Set Cover Greedy Algorithm

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the 

approximation ratio of the greedy algorithm is ≥ 1 − 𝑜 1 ⋅ ln 𝑠.

• if 𝑠 is the size of the largest set... (𝑠 can be linear in 𝑛)

Let’s show that the approximation ratio is at least Ω log 𝑛 ...

𝐎𝐏𝐓 = 𝟐

𝐆𝐑𝐄𝐄𝐃𝐘 ≥ 𝐥𝐨𝐠𝟐 𝒏
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Set Cover: Better Algorithm?

An approximation ratio of ln 𝑛 seems not spectacular...

Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Dinur & Steurer showed in 2013 that unless P = NP, minimum set 

cover cannot be approximated better than by a factor 1 − 𝑜 1 ⋅

ln 𝑛 in polynomial time.

• Proof is based on the so-called PCP theorem
– PCP theorem is one of the main (relatively) recent advancements in 

theoretical computer science and the major tool to prove approximation 
hardness lower bounds

– Shows that every language in NP has certificates of polynomial length 
that can be checked by a randomized algorithm by only querying a 
constant number of bits (for any constant error probability)
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Set Cover: Special Cases

Vertex Cover: set 𝑆 ⊆ 𝑉 of nodes of a graph 𝐺 = (𝑉, 𝐸) such that
∀ 𝒖, 𝒗 ∈ 𝑬, 𝒖, 𝒗 ∩ 𝑺 ≠ ∅.

Minimum Vertex Cover:

• Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:

• Each node has a weight

• Find a vertex cover of minimum total weight
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Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: 𝑀 ≤ |𝑆|

Proof: 

• At least one node of every edge 𝑢, 𝑣 ∈ 𝑀 is in 𝑆

• Needs to be a different node for different edges from 𝑀
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Vertex Cover vs Matching

Consider a matching 𝑀 and a vertex cover 𝑆

Claim: If 𝑀 is maximal and 𝑆 is minimum, 𝑆 ≤ 2 𝑀

Proof: 

• 𝑀 is maximal: for every edge 𝑢, 𝑣 ∈ 𝐸, either 𝑢 or 𝑣 (or both) 
are matched 

• Every edge 𝑒 ∈ 𝐸 is “covered” by at least one matching edge

• Thus, the set of the nodes of all matching edges gives a vertex 
cover 𝑆 of size 𝑆 = 2|𝑀|.
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Maximal Matching Approximation

Theorem: For any maximal matching 𝑀 and any maximum matching 
𝑀∗, it holds that

𝑀 ≥
𝑀∗

2
.

Proof:

Theorem: The set of all matched nodes of a maximal matching 𝑀 is 
a vertex cover of size at most twice the size of a min. vertex cover.
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Set Cover: Special Cases

Dominating Set:
Given a graph 𝐺 = 𝑉, 𝐸 , a dominating set 𝑆 ⊆ 𝑉 is a subset of
the nodes 𝑉 of 𝐺 such that for all nodes 𝑢 ∈ 𝑉 ∖ 𝑆, there is a 
neighbor 𝑣 ∈ 𝑆.
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Minimum Hitting Set

Given: Set of elements 𝑋 and collection of subsets 𝒮 ⊆ 2𝑋

– Sets cover 𝑋: ڂ𝑆∈𝒮 𝑆 = 𝑋

Goal: Find a min. cardinality subset 𝐻 ⊆ 𝑋 of elements such that

∀𝑆 ∈ 𝒮 ∶ 𝑆 ∩ 𝐻 ≠ ∅

Problem is equivalent to min. set cover with roles of sets and 
elements interchanged

Sets

Elements
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Knapsack

• 𝑛 items 1,… , 𝑛, each item has weight 𝑤𝑖 > 0 and value 𝑣𝑖 > 0

• Knapsack (bag) of capacity 𝑊

• Goal: pack items into knapsack such that total weight is at most 
𝑊 and total value is maximized:

max෍

𝑖∈𝑆

𝑣𝑖

s. t. 𝑆 ⊆ 1,… , 𝑛 and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

• E.g.: jobs of length 𝑤𝑖 and value 𝑣𝑖, server available for 𝑊 time 
units, try to execute a set of jobs that maximizes the total value
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Knapsack: Dynamic Programming Alg.

We have shown:

• If all item weights 𝑤𝑖 are integers, using dynamic programming, 
the knapsack problem can be solved in time 𝑂(𝑛𝑊)

• If all values 𝑣𝑖 are integers, there is another dynamic progr. 
algorithm that runs in time 𝑂(𝑛2𝑉), where 𝑉 is the max. value.


