UNI

"
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

FREIBURG

W

Metric TSP W 7\

UNI

FREIBURG

Input:
 Set IV of n nodes (points, cities, locations, sites)
* Distance functiond:V XV - R, i.e., d(u,v) is dist from u to v

 Distances define a metricon V:
d(u,v) =d(v,u) =0, dlu,v) =0 u="v

vu,v,w €V :du,v) <d(u,w) +dw,v) tReuyla tuag.

Solution: m

e Ordering/permutation vy, V5, ..., v, of the vertices
e Length of TSP path: Y1 d(v;, Vi41)
e Length of TSP tour: d(vq,v,) + Yrei d(v;, Vi)

Goal:
* Minimize length of TSP path or TSP tour

—

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Metric TSP

UNI

FREIBURG

* The problem is NP-hard

* We have seen that the greedy algorithm (always going to the
nearest unvisited node) gives an O (log n)-approximation

* (Can we get a constant approximation ratio?

e We will see that we can...

Algorithm Theory, WS 2019/20 Fabian Kuhn

TSP and MST

_

UNI

FREIBURG

Claim: The length of an optimal TSP path is lower bounded by the
weight of a minimum spanning tree

Proof:
 ATSP path is a spanning tree, it’s length is the weight of the tree

w(MST) = {EE? = =0

ATH ToUR

Corollary: Since an optimal TSP
tour is longer than an optimal TSP
path, the length of an optimal TSP
tour is also lower bounded by the
weight of a minimum spanning tree.

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

The MST Tour

UNI

FREIBURG

Walk around the MST...

\QMSK, c(wa“z_é 2 OO(MST)

Algorithm Theory, WS 2019/20

Fabian Kuhn

The MST Tour

UNI
f

FREIBURG

Walk around the MST...
Cost (walk) = 2 - weight(MST)

Cost (tour) < 2 - weight(MST) Q
>
”
i DN
AYAN
A . /
| g <’

"‘6&an ‘wzg . “
(ot (un) g cost (Walk)

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

Approximation Ratio of MST Tour

UNI
f

FREIBURG

Theorem: The MST TSP tour gives a 2-approximation for the
metric TSP problem.

Proof:
* Triangle inequality = length of tour is at most 2 - weight(MST)
* We have seen that weight(MST) < opt. tour length

Can we do even better?

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

UNI

Metric TSP Subproblems

FREIBURG

J
d
Claim: Given a metric (V, d) and (V',d) for V' € V, the optimal
TSP path/tour of (VV/, d) is at most as large as the optimal TSP

path/tour of (V, d).]

Optimal TSP tour of |

nodes 1,2,...,12 f@7

Induced TSP tour for %
nodes1,2,5,8,10,12 |

blue tour < green tour m

/
/
Algorithm Theory, WS 2019/20 Fabian Kuhn 8

TSP and Matching

UNI

FREIBURG

* Consider a metric TSP instance (V, d) with an even number of
nodes |V/]

* Recall that a perfect matching is a matching M € VV X IV such
that every node of V is incident to an edge of M.

* Because |V| is even and because in a metric TSP, there is an
edge between any two nodes u, v € I/, any partition of I into
|V|/2 pairs is a perfect matching.

* The weight of a matching M is the sum of the distances
represented by all edges in M:

w(M) = 2 d(u,v)
—_— {fu,v}emM

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

UNI

TSP and Matching

FREIBURG

Lemma: Assume we are given a TSP instance (V,d) with an even
number of nodes. The length of an optimal TSP tour of (I/,d) is at
least twice the weight of a minimum weight perfect matching of

V,d). w(M) = JZ- st (TR)

PrOOf: U\Ew, wQ)Y\‘\‘ \){:\ec&' W‘-J.C -8
 The edges of a TSP tour can be partitioned into 2 perfect
matchings

TP, = red + blua
*T \/ \/4

;ﬁ/\
wexkh +f MY

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Minimum Weight Perfect Matching

UNI
f

FREIBURG

Claim: If [V/] is even, a minimum weight perfect matching of (V, d)
can be computed in polynomial time

Proof Sketch:

* We have seen that a minimum weight perfect matching in a
complete bipartite graph can be computed in polynomial time

* With a more complicated algorithm, also a minimum weight
perfect matching in a complete (non-bipartite) graph can be
computed in polynomial time

* The algorithm uses similar ideas as the bipartite weighted
matching algorithm and it uses the Blossom algorithm as a
subroutine

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

UNI

Algorithm Outline

FREIBURG

Problem of MST algorithm:
* Every edge has to be visited twice

Goal:

 Get agraph on which every edge only has to be visited once
(and where still the total edge weight is small compared to an
optimal TSP tour) wl gosclda v a -hee

Euler Tours:
* A tour that visits each edge of a graph exactly once is called an
Euler tour (wo self-loops)

* An Euler tour in a (multi-)graph exists if and only if every node
of the graph has even degree

* That’s definitely not true for a tree, but can we modify our
MST suitably?

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

Euler Tour

UNI
f

FREIBURG

Theorem: A connected (multi-)graph G has an Euler tour if and only

if every node of G has even degree. \T
: s
Proof: S

* If G has an odd degree node, it clearly cannot have an Euler tour
* If G has only even degree nodes, a tour can be found recursively:

</
N
1. Start at some node /7

2. Aslong as possible, follow
an unvisited edge

— Gives a partial tour, the remaining
graph still has even degree
3. Solve problem on remaining compon®&nts recursively

4. Merge the obtained tours into one tour that visits all edges

Algorithm Theory, WS 2019/20 Fabian Kuhn 13

UNI

TSP Algorithm = deog) = 2 (€l

FREIBURG

Compute MST T
Vodaq: nodes that have an odd degree in T (|V,q44] is even)

Compute min weight perfect matching M of (V,34, d)

—

i A

(V,T U M) is a (multi-)graph ‘
with even degrees

L @ / T

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

UNI

TSP Algorithm

FREIBURG

5. Compute Euler touron (V,T U M) Eules drar < wCKST)

6. Total length of Euler tour < % - TSPopT -‘-w(u«lv&-‘-%)

7. Get TSP tour by taking shortcuts
wherever the Euler tour
visits a node twice

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

TSP Algorithm

UNI
FREIBURG

* The described algorithm is by Christofides

Theorem: The Christofides algorithm achieves an approximation
ratio of at most 3/,,.

Proof:

* The length of the Euler tour is < 3/, - TSPypr

* Because of the triangle inequality, taking shortcuts can only
make the tour shorter

Algorithm Theory, WS 2019/20 Fabian Kuhn 16

Set Cover o

UNI
i

FREIBURG

NS

A set of elements X and a collection S of subsets X, i.e., § € 2%

— _
— such that Uges S = X
_?—

Set Cover: /5“} gl
* Asetcover Cof (X,8) is asubset of the sets & which covers X:

Input:

Example:

Algorithm Theory, WS 2019/20 Fabian Kuhn 17

Minimum (Weighted) Set Cover

UNI

FREIBURG

Minimum Set Cover:

* Goal: Find a set cover C of smallest possible size
— i.e., over X with as few sets as possible

Minimum Weighted Set Cover:
* EachsetS € S has aweight wg > 0
* Goal: Find a set cover C of minimum weight

Example:

Algorithm Theory, WS 2019/20 Fabian Kuhn

18

Minimum Set Cover: Greedy Algorithm

UNI

FREIBURG

Greedy Set Cover Algorithm:

e StartwithC =0
* Ineachstep,addsetS € § \ C to C s.t. S covers as many
uncovered elements as possible

Example:

Algorithm Theory, WS 2019/20 Fabian Kuhn

19

Weighted Set Cover: Greedy Algorithm

UNI
FREIBURG

Greedy Weighted Set Cover Algorithm:

Start withC = @ C Ccurten b sed r{ cubsebs '%)i

In each step, add set S € § \ C with the best weight per
newly covered element ratio (set with best efficiency):

CG"QM
Wg ?IWCQ ?Q‘ (’1

|S\UTEC’T| #w%a«'e&‘“("ﬁg

S = arg min
SES\C

Analysis of Greedy Algorithm:

S

Assign a price p(x) to each element x € X:
The efficiency of the set when covering the element

If covering x with set S, if partial cover is C before adding S:
We at Wee end (ofll Puess)

pﬁ(f)) |S \ UTecT| ?(x) 2 T
Tel

Algorithm Theory, WS 2019/20 Fabian Kuhn 20

Weighted Set Cover: Greedy Algorithm

|
FRE:BURG

UNI

Example:

* UniverseX ={1,2,3,4,5,6,7,8,9,10}
e Setsd = {51’52153154155156}

53 — {é; é,‘?, 8, 9},
S4- — {%;4;?1 91 10};

Ss=14%3.%6%89,10}, ws

S¢ = 19,10},
S5

—

EUEARETT T

Ws, =i<——2
Wg, =1
ws, = 4
Ws, = 6
=9
Ws, =33
Aol i

23‘+‘(-l+2'2-3' + 19 =12

¢h ¥ 8 [FRO) S (w12

Algorithm Theory, WS 2019/20

Fabian Kuhn

21

Weighted Set Cover: Greedy Algorithm

UNI
FREIBURG

Lemma: Consideraset S = {x{,x,, ..., X} € S be asetand
assume that the elements are covered in the order x4, x5, ..., Xj
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x; is at most p(x;) < - Wlil
Ws,
‘ 2?0')<(A’5<‘ hi———-t +)
. Xk X€S ——

'H(lé) S Quk + |

W
(SRS — ’\>(Yz)<) Q)< -k—:??.

Algorithm Theory, WS 2019/20 Fabian Kuhn 22

UNI

Weighted Set Cover: Greedy Algorithm

FREIBURG

Lemma: Consideraset S = {x{,x,, ..., X} € S be asetand
assume that the elements are covered in the order x4, x5, ..., Xj
by the greedy algorithm (ties broken arbitrarily).

Then, the price of element x; is at most p(x;) < kiviil

Corollary: The total price of aset S € § of size |S| = k is
K

1
zp(x)SWS-Hk, where Hk=2—.S1+lnk
XES - T i=1 L

Algorithm Theory, WS 2019/20 Fabian Kuhn 23

Weighted Set Cover: Greedy Algorithm .

UNI
FREIBURG

Corollary: The total price of aset S € S of size |S| = k is
K

1
zp(x)SWS-Hk, where Hk=27S1+lnk

XES =1

Theorem: The approximation ratio of the greedy minimum
(weighted) set cover algorithmisat most H; < 1 4+ In s, where s

is the cardinality of the largest set (s = r§1§|5|).
S

bkl pre
£ W, QA
= wA ‘-\{(57

Sws = S < ZMA'K(S) = W(o¥T) - H(s)
0

xeX eqRT XeA Aeon
Algorithm Theory, WS 2019/20 A Fabian Kuhn < w(m) (\ + 'Q“ S) 24

Set Cover Greedy Algorithm

UNI

Can we improve this analysis?

No! Even for the unweighted minimum set cover problem, the
approximation ratio of the greedy algorithm is = (1 — 0(1)) -In s.

—_—

e if sisthe size of the largest set... (s can be linear in n)

Let’s show that the approximation ratio is at least Q(logn)...

/ / "
...OO0.0.QO0.0...OO...OOOO0.0.QQ]
..QQOO...O.......Q.Q...O0.0.0.00]

OPT = 2
GREEDY > log; n

Algorithm Theory, WS 2019/20 Fabian Kuhn 25

FREIBURG

UNI

Set Cover: Better Algorithm?

An approximation ratio of In n seems not spectacular...
Can we improve the approximation ratio?

No, unfortunately not, unless P = NP

Dinur & Steurer showed in 2013 that unless P = NP, minimum set
cover cannot be approximated better than by a factor (1 — 0(1)) -
Inn in polynomial time.

* Proofis based on the so-called PCP theorem

e

— PCP theorem is one of the main (relatively) recent advancements in
theoretical computer science and the major tool to prove approximation
hardness lower bounds

— Shows that every language in NP has certificates of polynomial length
that can be checked by a randomized algorithm by only querying a
constant number of bits (for any constant error probability)

Algorithm Theory, WS 2019/20 Fabian Kuhn 26

FREIBURG

Set Cover: Special Cases

UNI
f

FREIBURG

Vertex Cover: set S € V of nodes of a graph ¢ = (V, E) such that
v{u,v} € E, fu,v}Ins # 0.

<=

Minimum Vertex Cover:

* Find a vertex cover of minimum cardinality

Minimum Weighted Vertex Cover:
 Each node has a weight
* Find a vertex cover of minimum total weight

Algorithm Theory, WS 2019/20 Fabian Kuhn 27

Vertex Cover vs Matching

Consider a matching M and a vertex cover S

Claim: |[M| < |S]

Proof:
* At least one node of every edge {u,v} € Misin S
* Needs to be a different node for different edges from M

Algorithm Theory, WS 2019/20 Fabian Kuhn

UNI
f

FREIBURG

Vertex Cover vs Matching

UNI
f

FREIBURG

Consider a matching M and a vertex cover S

Claim: If M is maximal and S is minimum, |S| < 2|M|

Proof:

* M is maximal: for every edge {u, v} € E, either u or v (or both)
are matched

 Every edge e € E is “covered” by at least one matching edge

* Thus, the set of the nodes of all matching edges gives a vertex
cover S of size |S| = 2|M].

Algorithm Theory, WS 2019/20 Fabian Kuhn 29

Maximal Matching Approximation

UNI
f

FREIBURG

Theorem: For any maximal matching M and any maximum matching

M*, it IIOIdS tllat
— 2 u

Proof:

Theorem: The set of all matched nodes of a maximal matching M is
a vertex cover of size at most twice the size of a min. vertex cover.

Algorithm Theory, WS 2019/20 Fabian Kuhn 30

Set Cover: Special Cases

UNI
FREIBURG

Dominating Set:

Given a graph G = (V,E), a dominating set S € V is a subset of
the nodes I/ of G such that for all nodesu € V' \ S, thereis a
neighbor v € S.

PN AN

—O

Algorithm Theory, WS 2019/20 Fabian Kuhn 31

Minimum Hitting Set

UNI
f

FREIBURG

Given: Set of elementserand collection of subsets § € 2%
— Setscover X: Uges S = X

Goal: Find a min. cardinality subset H € X of elements such that
VSES:SNH+*0Q

Problem is equivalent to min. set cover with roles of sets and
elements interchanged

Sets

EIemen:cs

Algorithm Theory, WS 2019/20 Fabian Kuhn 32

Knapsack

UNI
FREIBURG

* nitemsl,...,n, each item has weight w; > 0 and value v; > 0

p—

* Knapsack (bag) of capacity W

* Goal: pack items into knapsack such that total weight is at most
w and total value is maximized:

<W

* E.g.:jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2019/20 Fabian Kuhn 33

Knapsack: Dynamic Programming Alg.

UNI

We have shown:
* If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nl/)

* If all values b are mtegers there is another dynamic progr.
algorithm that runs in time OSnZV} where I/ is the max. value.

i gt::u\g&gg(t \ﬁh.f | iy = 0
Wl sty oty ‘k‘“‘v‘ K(zo, x)= o Upr x>o>

o. - - _ _ _ __

X =~
o / A
4)\ Q(t,y) WAy,
\L {i(t,x) Zgu“/"‘\’) + W,

\Y
n/ : r‘{é\)J \ - V.

Algorithm Theory, WS 2019/20 Fabian Kuhn 34

FREIBURG

