UNI

"
Chapter 8

Approximation Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

FREIBURG

Knapsack

UNI
FREIBURG

* nitems1,...,n, eachitem has weight w; > 0 and value v; > 0
* Knapsack (bag) of capacity W

* Goal: pack items into knapsack such that total weight is at most
W and total value is maximized:

max z V;

i€ES
s.t. S C{1, ..ﬂ_} and Zwi <Ww

IES

* E.g.:jobs of length w; and value v;, server available for W time
units, try to execute a set of jobs that maximizes the total value

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

UNI
f

FREIBURG

Knapsack: Dynamic Programming Alg.

We have shown:

{- If all item weights w; are integers, using dynamic programming,
the knapsack problem can be solved in time O (nW)

* |If all values v; are integers, there is another dynamic progr.
algorithm that runs in time 0 (n“V), where V is the max. value.
Problems:

 If W and V are large, the algorithms are not polynomial inn

* If the values or weights are not integers, things are even worse
(and in general, the algorithms cannot even be applied at all)

Idea:

 Can we adapt one of the algorithms to at least compute an
approximate solution?

—

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Approximation Algorithm i
——

UNI
FREIBURG

* The algorithm has a parametere > 0
 We assume that each item alone fits into the knapsack

* We define: / /
v vin I
V = maxv;, Vi:D; = —}, V := max 7;
= 1<i<n - E 1<isn _

* We solve the problem with integer values ¥; and welghts Wi
using dynamic programming in time O(n2 - 17)

Theorem: The described algorithm runs in time 0(n3/¢).

_
Proof:
. R vin n ny w
7= = el =[]
- 1sisn . 1sisnl gV 574 €

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

UNI

Approximation Algorithm i5= 2.0

FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof: o dhow : \:(é) 2 - .v(sh)

* Define the set of all feasible solutions (subsets of [n])

g_{ C{1,..,n}: Zwl_ }

* v(S5): value of solution S w.r.t. values v, v,, ...
D(S5): value of solution S w.r.t. values 74, D, ...

— —
—_—

e S7:an optimal solution w.r.t. values v4, v, ...
S an optimal solution w.r.t. values ¥4, U, ...
So(wlwu gwhde& k"'& v('au {rosy- a(a
 Weights are not changed at all, hence, S is a feasible solution

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

Approximation Algorithm

UNI
FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
vS) =), vi=mE) v

e We have

i€S* i€S
(S ==:E:i3-==lrun(:E:i?
(5) , ' Ses '
i€S$ SES

e ——

* Because every item fits into the knapsack, we have
Vi € {1,...,71}: v; <V < z Vi =~ (3*)

>
~ vin eV < ~ vin
c Also:¥, == = v,<—-7;, and¥; < —=+1
=174 n =174
— =

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

UNI

Approximation Algorithm ysv(s)

FREIBURG

Theorem: The approximation algorithm computes a feasible
solution with approximation ratio at least 1 — ¢.

Proof:
* We have
eV &V &V vin
v(S*)=Zvi_—°ZUi_—- v < —- (1+—)
B 4 n . n d n d eV
[ES* IES™ IES LES

* Therefore /J

v(§*) = z v; < v; < eV + v(S)

IES™ lES (S) x Li)
Sev \'J
* We have v(§*) = V and therefore (S)

(1—¢) - v(s*) <v(S)

O(4/¢)

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

Approximation Schemes

UNI
FREIBURG

For every parameter € > 0, the knapsack algorithm computes a
(1 ¢ &)-approximation in time 0(n>/¢).

For every fixed &, we therefore get a polynomial time
approximation algorithm

An algorithm that computes an (1 + &)-approximation for every
¢ > 0 is called an approximation scheme.

O(M%)
If the running time is polynomial for every fixedi, we say that
the algorithm is a polynomial time approximation scheme (PTAS)

If the running time is also polynomial in 1/¢, the algorithm is a
fully polynomial time approximation scheme (FPTAS)

Thus, the described alg. is an FPTAS for the knapsack problem

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

