

Chapter 9 Online Algorithms

Algorithm Theory WS 2019/20

Fabian Kuhn

Online Computations

- Sometimes, an algorithm has to start processing the input before the complete input is known
- For example, when storing data in a data structure, the sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole input before computing the output.

- Some problems are inherently online
 - Especially when real-time requests have to be processed over a significant period of time

Competitive Ratio

- Let's again consider optimization problems
 - For simplicity, assume, we have a minimization problem

Optimal offline solution OPT(I):

• Best objective value that an offline algorithm can achieve for a given input sequence I

Online solution ALG(I):

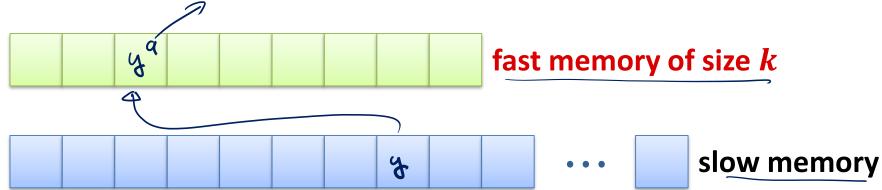
Objective value achieved by an online algorithm ALG on I

Competitive Ratio: An algorithm has competitive ratio $c \ge 1$ if $ALG(I) \le c \cdot OPT(I) + \alpha$.

• If $\alpha = 0$, we say that ALG is strictly *c*-competitive.

Paging Algorithm

Assume a simple memory hierarchy:



If a memory page has to be accessed:

- Page in fast memory (hit): take page from there
- Page not in fast memory (miss): leads to a page fault
- Page fault: the page is loaded into the fast memory and some page has to be evicted from the fast memory
- Paging algorithm: decides which page to evict
- Classical online problem: we don't know the future accesses

Paging Strategies

Least Recently Used (LRU):

Replace the page that hasn't been used for the longest time

First In First Out (FIFO):

Replace the page that has been in the fast memory longest

Last In First Out (LIFO):

Replace the page most recently moved to fast memory

Least Frequently Used (LFU):

Replace the page that has been used the least

Longest Forward Distance (LFD): optimal offline strategy

- Replace the page whose next request is latest (in the future)
- LFD is **not** an online strategy!

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

- For contradiction, assume that LFD is not optimal
- Then there exists a finite input sequence σ on which LFD is not optimal (assume that the length of σ is $|\sigma| = n$)
- Let OPT be an optimal solution for σ such that
 - OPT processes requests $1, \dots, i$ in exactly the same way as LFD
 - OPT processes request i + 1 differently than LFD
 - Any other optimal strategy processes one of the first $\underline{i+1}$ requests differently than LFD
- Hence, OPT is the optimal solution that behaves in the same way as LFD for as long as possible \rightarrow we have i < n
- Goal: Construct OPT' that is identical with LFD for req. 1, ..., i + 1

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request i + 1 does <u>not</u> lead to a page fault

- LFD does not change the content of the fast memory
- OPT behaves differently than LFD
 - → OPT replaces some page in the fast memory
 - As up to request i+1, both algorithms behave in the same way, they also have the same fast memory content
 - OPT therefore does not require the new page for request i + 1
 - Hence, OPT can also load that page later (without extra cost) \rightarrow OPT'

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request i + 1 does lead to a page fault

- LFD and OPT move the same page into the fast memory, but they evict different pages
 - If OPT loads more than one page, all pages that are not required for request i+1 can also be loaded later
- Say, LFD evicts page p and OPT evicts page p^\prime
- By the definition of LFD, p^\prime is required again before page p

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 2: Request i + 1 does lead to a page fault

- (a) OPT keeps p in fast memory until request ℓ
 - Evict \underline{p} at request i+1, keep p' instead and load p (instead of $\underline{p'}$) back into the fast memory at request ℓ
 - b) OPT evicts p at request $\ell' < \ell$
 - Evict p at request i+1 and p' at request ℓ' (switch evictions of p and p')

Phase Partition

We partition a given request sequence σ into phases as follows:

- Phase 0: empty sequence
- Phase i: maximal sequence that immediately follows phase i-1 and contains at most \underline{k} distinct page requests

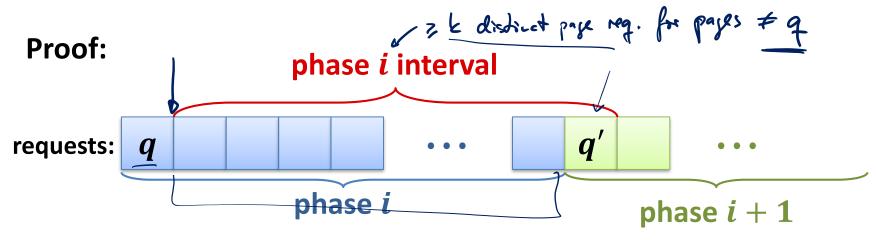
Example sequence (k = 4):

Phase *i* **Interval**: interval starting with the second request of phase *i* and ending with the first request of phase i + 1

• If the last phase is phase p, phase i interval is defined for $i=1,\ldots,p-1$

Optimal Algorithm

Lemma: Algorithm LFD has at least one page fault in each phase i interval (for i = 1, ..., p - 1, where p is the number of phases).



- q is in fast memory after first request of phase i
- Number of distinct requests in phase i: k
- By maximality of phase i: q' does not occur in phase i
- Number of distinct requests $\neq q$ in phase interval i: k
 - > at least one page fault per phase interval

LRU and FIFO Algorithms

Lemma: Algorithm LFD has at least one page fault in each phase i interval (for i = 1, ..., p - 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline algorithm is at least p-1, where p is the number of phases

Theorem: The <u>LRU</u> and the <u>FIFO</u> algorithms both have a competitive ratio of at most \underline{k} .

Proof:

- We will show that both have at most k page faults per phase

$$LRU(I), FIFO(I) \le k \cdot p \le k \cdot OPT(I) + k$$

LRU and FIFO Algorithms

Theorem: The LRU and the FIFO algorithms both have a competitive ratio of at most k.

Proof:

- Need to show that both have at most k page faults per phase
- LRU:
 - The k last pages used are the k least recently used
 - Throughout a phase i, the k distinct pages of phase i are the l.r.u.
 - Once in the fast memory, these pages are therefore not evicted until the end of the phase

FIFO:

- In each page fault in phase i, one of the k pages of phase i is loaded into fast memory
- Once a page is loaded in a page fault of phase i it belongs to the least k pages loaded into fast memory throughout the rest of the phase
- Hence: Each of the k pages leads to ≤ 1 page fault in phase i

Lower Bound

Theorem: Even if the <u>slow memory</u> contains only $\underline{k+1}$ pages, any deterministic algorithm has competitive ratio at least k.

Proof:

- Consider some given deterministic algorithm ALG
- Because ALG is deterministic, the content of the fast memory after the first i requests is determined by the first i requests.
- Construct a request sequence inductively as follows:
 - Assume some initial slow memory content
 - The $(i+1)^{st}$ request is for the page which is not in fast memory after the first i requests (throughout we only use k+1 different pages)
- There is a page fault for every request
- OPT has a page fault at most every \underline{k} requests
 - There is always a page that is not required for the next k-1 requests

Randomized Algorithms

- We have seen that deterministic paging algorithms cannot be better than k-competitive
- Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has competitive ratio $c \ge 1$ if for all inputs I,

$$\mathbb{E}[ALG(I)] \leq c \cdot OPT(I) + \alpha$$

• If $\alpha \leq 0$, we say that ALG is strictly *c*-competitive.

Adversaries

 For randomized algorithm, we need to distinguish between different kinds of adversaries (providing the input)

Oblivious Adversary:

- Has to determine the complete input sequence before the algorithm starts
 - The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:

- The input sequence is constructed during the execution
- When determining the next input, the adversary knows how the algorithm reacted to the previous inputs
- Input sequence depends on the random behavior of the alg.
- Sometimes, two adaptive adversaries are distinguished
 - offline, online: different way of measuring the adversary cost

Lower Bound

The adversaries can be ordered according to their strength

oblivious < online adaptive < offline adaptive

- An algorithm that achieves a given comp. ratio with an adaptive adversary is at least as good with an oblivious one
- A lower bound that holds against an oblivious adversary also holds for the two adaptive adversaries

• ...

Theorem: No randomized paging algorithm can be better than k-competitive against an adaptive adversary.

Proof: The same proof as for deterministic algorithms works.

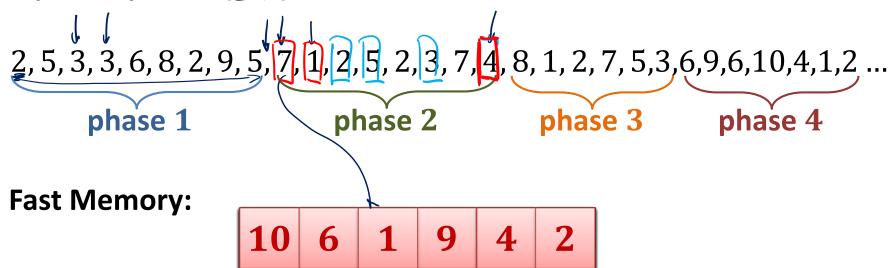
Are there better algorithms with an oblivious adversary?

The Randomized Marking Algorithm

- Every entry in fast memory has a marked flag
- Initially, all entries are unmarked.
- If a page in fast memory is accessed, it gets marked
- When a page fault occurs:
 - If all k pages in fast memory are marked,
 all marked bits are set to 0
 - The page to be evicted is chosen uniformly at random among the unmarked pages
 - The marked bit of the new page in fast memory is set to 1

Example

Input Sequence (k=6):



Observations:

- At the end of a phase, the fast memory entries are exactly the k pages of that phase
- At the beginning of a phase, all entries get unmarked
- #page faults depends on #new pages in a phase