Chapter 9
Online Algorithms

Algorithm Theory
WS 2019/20

Fabian Kuhn

UNI

FREIBURG

Online Computations

UNI
f

FREIBURG

* Sometimes, an algorithm has to start processing the input
before the complete input is known

* For example, when storing data in a data structure, the
sequence of operations on the data structure is not known

Online Algorithm: An algorithm that has to produce the output
step-by-step when new parts of the input become available.

Offline Algorithm: An algorithm that has access to the whole
input before computing the output.

 Some problems are inherently online

— Especially when real-time requests have to be processed over a
significant period of time

Algorithm Theory, WS 2019/20 Fabian Kuhn 2

Competitive Ratio T

UNI
FREIBURG

* Let’s again consider optimization problems

— For simplicity, assume, we have a minimization problem

Optimal offline solution OPT (I):

* Best objective value that an offline algorithm can achieve for a
given input sequence [

Online solution ALG(I):
e Objective value achieved by an online algorithm ALG on [

Competitive Ratio: An algorithm has competitive ratioc = 1 if
ALG(I) < c-OPT() + «a.

 Ifa = 0, we say that ALG is strictly c-competitive.

Algorithm Theory, WS 2019/20 Fabian Kuhn 3

Paging Algorithm

UNI
FREIBURG

Assume a simple memory hierarchy:
O

e

! fast memory of size k

—

% coe slow memory

If a memory page has to be accessed:

Page in fast memory (hit): take page from there
Page not in fast memory (miss): leads to a page fault

Page fault: the page is loaded into the fast memory and some
page has to be evicted from the fast memory

Paging algorithm: decides which page to evict

Classical online problem: we don’t know the future accesses

Algorithm Theory, WS 2019/20 Fabian Kuhn 4

Paging Strategies

UNI
f

FREIBURG

Least Recently Used (LRU):
* Replace the page that hasn’t been used for the longest time

First In First Out (FIFO):
* Replace the page that has been in the fast memory longest

Last In First Out (LIFO):
* Replace the page most recently moved to fast memory

Least Frequently Used (LFU):
 Replace the page that has been used the least

Longest Forward Distance (LFD): «— OVJ%‘“‘(0%“ 4“‘)(5’3;
* Replace the page whose next request is latest (in the future)

 LFDis not an online strategy!

Algorithm Theory, WS 2019/20 Fabian Kuhn 5

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

For contradiction, assume that LFD is not optimal

Then there exists a finite input sequence o on which LFD is not
optimal (assume that the length of o is |o| = n)

Let OPT be an optimal solution for ¢ such that

e

., 1 in exactly the same way as LFD

1,..

— OPT processes requests
— OPT processes request i + 1 differently than LFD

— Any other optimal strategy processes one of the first i + 1 requests
differently tha(n)LFD
Qa

Hence, OPT is the optimal solution that behaves in the same way
as LFD for as long as possible 2 we havei < n

Goal: Construct OPT' that is identical with LFD forreq. 1,...,i + 1

; ——

Algorithm Theory, WS 2019/20 Fabian Kuhn 6

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:

Case 1: Request i + 1 does not lead to a page fault

* LFD does not change the content of the fast memory

f—

* OPT behaves differently than LFD
— OPT replaces some page in the fast memory

— Asup torequesti + 1, both algorithms behave in the same way, they also
have the same fast memory content

— OPT therefore does not require the new page for requesti + 1

— Hence, OPT can also load that page later (without extra cost) 2 OPT’

Algorithm Theory, WS 2019/20 Fabian Kuhn 7

UNI

LFD is Optimal

FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault

 LFD and OPT move thEsame page into the fast memory, but they
evict different pages

— |f OPT loads more than one page, all pages that are not required for
request i + 1 can also be loaded later

* Say, LFD evicts page p and OPT evicts page p’

By the definition of LFD, p’ is required again before page p

Algorithm Theory, WS 2019/20 Fabian Kuhn 8

LFD is Optimal

UNI
FREIBURG

Theorem: LFD (longest forward distance) is an optimal offline alg.

Proof:
Case 2: Request i + 1 does lead to a page fault
y 107
[+ 15 (€/< £: OPT evictsp j':nextreq.forp’ j:nextreq.forp
~

-? ¢ $ 1 I >
LFD evicts p £ < j': OPT loads p’ (for first time after i + 1)
OPT evicts p’ x

‘H T

OPT keeps S p in fast memory until request £

— EBvictp atrequesti + 1, keep p’ instead and load p (instead ofp) back
into the fast memory at request £

b) OPT evicts p at request £’ < ¥
— Evictp atrequesti + 1 and p’ at request €’ (switch evictions of p and p’)

Algorithm Theory, WS 2019/20 Fabian Kuhn 9

Phase Partition

UNI
f

FREIBURG

We partition a given request sequence_g into phases as follows:
* Phase 0: empty sequence

* Phase i : maximal sequence that immediately follows phase
[— 1 and contains at most k distinct page requests

=
Example sequence (k 4):
2512542‘10836‘2668326l91063102},,
pluse 1 ph w2 phase 3 | axe }»A e S
Vlnx\ h\&:\m\ I’l" 7"“‘ | PL\ 3 i flux ¢ M‘

Phase i Interval: interval starting with the second request of phase i
and ending with the first request of phasei + 1
* If the last phase is phase p, phase i interval is defined fori =1,...,p—1

——

Algorithm Theory, WS 2019/20 Fabian Kuhn 10

Optimal Algorithm

UNI
f

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase

i interval (fori =1, ...,p — 1, where p is the number of phases).

7k dnhoct prye v o s #F
phase i interval T

Proof:

requests: ﬂ eeoo0 q | oo
W phasei + 1

* q isin fast memory after first request of phase i

 Number of distinct requests in phase i: k
* By maximality of phase i: g’ does not occur in phase i
* Number of distinct requests # g in phase interval i: k

> at least one page fault par plee Mwdo v

Algorithm Theory, WS 2019/20 Fabian Kuhn 11

LRU and FIFO Algorithms

UNI

FREIBURG

Lemma: Algorithm LFD has at least one page fault in each phase i
interval (fori = 1, ...,p — 1, where p is the number of phases).

Corollary: The number of page faults of an optimal offline
algorithm is at least p — 1, where p is the number of phases

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most k.

Proof:
* We will show that both have at most k page faults per phase
 We then have (for every input [): k-p = L.((-.) b

LRU(D),FIFO(I) <k -p <k -OPT() + k

—_— 7

Algorithm Theory, WS 2019/20 Fabian Kuhn 12

UNI

LRU and FIFO Algorithms

FREIBURG

Theorem: The LRU and the FIFO algorithms both have a
competitive ratio of at most k.

Proof:
* Need to show that both have at most k page faults per phase
e LRU:

— The k last pages used are the k least recently used

— Throughout a phase i, the k distinct pages of phase i are the l.r.u.

— Once in the fast memory, these pages are therefore not evicted until the
end of the phase

* FIFO:

— In each page fault in phase i, one of the k pages of phase i is loaded into
fast memory =

— Once a page is loaded in a page fault of phase i it belongs to the least k
pages loaded into fast memory throughout the rest of the phase

— Hence: Each of the k pages leads to < 1 page fault in phase i
Algorithm Theory, WS 2019/20 Fabian Kuhn 13

Lower Bound

UNI

FREIBURG

Theorem: Even if the slow memory contains only k 4+ 1 pages,
any deterministic algorithm has competitive ratio at least k.

Proof:
 Consider some given deterministic algorithm ALG

* Because ALG is deterministic, the content of the fast memory
after the first i requests is determined by the first i requests.

* Construct a request szqyence inductively as follows:

— Assume some initial memory content

— The (i + 1)t request is for the page which is not in fast memory after
the first i requests (throughout we only use k + 1 different pages)

 There is a page fault for every request

e OPT has a page fault at most every k requests
— There is always a page that is not required for the next k — 1 requests

Algorithm Theory, WS 2019/20 Fabian Kuhn 14

Randomized Algorithms

UNI

* We have seen that deterministic paging algorithms cannot be
better than k-competitive

* Does it help to use randomization?

Competitive Ratio: A randomized online algorithm has
competitive ratio ¢ = 1 if for all inputs I,

E[ALG(D)] < ¢ - OPT(I) + a.

 Ifa <0, wesay that ALG is strictly c-competitive.

Algorithm Theory, WS 2019/20 Fabian Kuhn 15

FREIBURG

Adversaries

UNI

* For randomized algorithm, we need to distinguish between
different kinds of adversaries (providing the input)

Oblivious Adversary:

* Has to determine the complete input sequence before the
algorithm starts

— The adversary cannot adapt to random decisions of the algorithm

Adaptive Adversary:
 The input sequence is constructed during the execution

When determining the next input, the adversary knows how the
algorithm reacted to the previous inputs

L * Input sequence depends on the random behavior of the alg.
 Sometimes, two adaptive adversaries are distinguished

— offline, online : different way of measuring the adversary cost
Algorithm Theory, WS 2019/20 Fabian Kuhn 16

FREIBURG

Lower Bound

UNI

FREIBURG

The adversaries can be ordered according to their strength

oblivious < online adaptive < offline adaptive

————

* An algorithm that achieves a given comp. ratio with an
adaptive adversary is at least as good with an oblivious one

 Alower bound that holds against an oblivious adversary also
holds for the two adaptive adversaries

Theorem: No randomized paging algorithm can be better than
k-competitive against an adaptive adversary.

e ——

Proof: The same proof as for deterministic algorithms works.

EAre there better algorithms with an oblivious adversary?j

E———

—

Algorithm Theory, WS 2019/20 Fabian Kuhn

17

The Randomized Marking Algorithm

UNI

FREIBURG

e Every entry in fast memory has a marked flag

 Initially, all entries are unmarked.
* If a page in fast memory is accessed, it gets marked

* When a page fault occurs:

— If all k pages in fast memory are marked,
all marked bits are setto 0

— The page to be evicted is chosen uniformly at random
among the unmarked pages

— The marked bit of the new page in fast memory issetto 1

Algorithm Theory, WS 2019/20 Fabian Kuhn 18

Example

|
FRE:BURG

UNI

Input Sequence (k=6):

|
2,5,3,3,6,8,2,9, 5\%\7 m@ , Z,B, 7\4,8,1,2,7,5,3,6,9,6,10,4,1,2 ...
= — =\ ~—
phase 1 phase 2 phase 3 phase 4

Fast Memory:

1006 |1 9 4 2

Observations:

* At the end of a phase, the fast memory entries are exactly the k
pages of that phase

* At the beginning of a phase, all entries get unmarked
e #ipage faults depends on #new pages in a phase

Algorithm Theory, WS 2019/20 Fabian Kuhn 19

